

1100100

The Virtual Liver: a Multiscale Systems Biology Platform to Study Liver Function, Dysfunction & Injury

Adriano Henney, Programme Director Lars Kuepfer, Bayer Technology Services GmbH

Bundesministerium für Bildung und Forschung

Q1010010101010

1001010100110101010

Federal Ministry of Education and Research

Why Focus on the Liver?

- Major organ of homeostasis
 - Innate immunity
 - Acute phase response mediators
- Critical role in detoxification
- Dysfunction -> significant burden on health care budgets
- Dysfunction associated with modern lifestyle
- Toxicity: major hurdle to delivering novel medicines
- Access to data at all level of organisation

POLIZINO IN THE

Federal Ministr of Education and Research

Objectives

> Move from the study at the cellular level to consider the whole organ

- Building on successes of HepatoSys and learning from the Virtual Heart
- Deliver a true multi-scale representation of liver physiology
 - Modular, flexible and modifiable
- Deliver novel tools, processes, technologies and know-how
 - Understanding of dynamics of liver function in normal & diseased states
 - Informed decision making based on network interactions rather than reductionist data
- Deliver tangible evidence of impact on unmet medical needs, through specific, defined objectives aligned to diseases:
 - Non alcoholic fatty liver disease
 - Regeneration
 - Inflammation

POLIZINO IN THE

of Education

The Virtual Liver Network

- Complex Organisation:
 - 9 Work Packages
 - 69 Principal Investigators
 - 44 Projects
 - >200 contributing Scientists
 - 36 Independent Institutions
 - Mix of academics & industry
 - Geographically Dispersed
- €50M distributed budget

SPOASSRED BY THE

Federal Ministr of Education and Research

The Virtual Liver Network

To create:

- A dynamic mathematical model that represents human liver physiology, morphology and function
- A model that integrates quantitative data from all levels of organisation, from sub-cellular levels to the whole organ
- A model that has a specific focus on application to address the needs of the patient and clinician.
- A platform that can be modified, supplemented and improved over time

DIVERSION OF THE

Federal Minist of Education and Research

Structure

•

Work Package	Subject	Р	rojects
A1	Cellular Metabolism		3
A2	Cellular Signalling	CELL LEVEL	5
A3	Cross Linking		6
В	Cell-Cell Communicatio	TISSUE LEVEL	9
С	Liver Lobule		6
D	Whole Organ	ORGAN LEVEL	4
E	Integrated Model		4
F	Data Management		3
G	Clinical Translation	CLINICAL	4

IPONIDRID IN THE

Federal Ministry of Education and Research

Structure

POLISHID IN THE

Federal Ministr of Education and Research

Structure

DPCALORID IN THE

Federal Minist of Education and Research

110010010100100

Show Cases

Leadership Team & Work Package Leaders

Steven Dooley Mannheim

NRIA Paris/ **Dirk Drasdo** Leipzig

Rolf Gebhardt -eipzig

Jan Hengstler Dortmund

Hergo Holzhütter Charité, Berlin

HITS, Heidelberg Nolfgang Müller

DKFZ, Heidelberg Klingmüller Irsula

Jrsula Kummer Heidelberg BioQuant,

Bayer Technical Services ars Küpfer-

Federal Ministry of Education and Research

MEVIS, Bremen **Obias Preusser** Fraunhofer

Jens Timmer Freiburg

DOMESTIC: N THE

HGF-Induced Regeneration (Klingmüller & Drasdo)

Overview

Addresses how proliferation patterns during liver regeneration are controlled by multi-scale spatiotemporal modelling describing events from intracellular to tissue level.

Objectives

- To link activation of signalling pathways to hepatocyte proliferation by ODE modelling.
- To integrate intracellular and tissue models developed based on proliferation in CCl₄ treated mice
- To Link the multi-scale model to a compartmental pharmacokinetic model of HGF for the whole-body taking into account recirculation of proteins via the blood.
- To provide an integrative multi-scale model to gain insights into mechanisms that could promote drug induced liver injury or liver failure after resection.

Steatosis (Holzhütter & Gebhardt)

- Development and validation of a multiscale organ model to simulate hepatic lipid accumulation, export & degradation
- Dynamic models of metabolism and tissue structure models of liver lobule (Drasdo & Höhme PNAS 2010)
 - a modular backbone of models of the steatotic process bridging spatial and temporal scales.
- Application of the modular backbone:
 - Quantification & Impact of pro- & anti-steatotic factors
 - Propose novel clinical tests to assess individual risk for hepatic steatosis
 - Develop novel dietary & pharmacological strategies for prevention and reversion
 - Impact of steatosis on drug metabolism.

Federal Ministry

of Education and Research

Aim

To identify and mathematically model the complex interplay of the different cell types and the most relevant mechanisms that control the inflammatory response of the liver to LPS.

Objectives

A multi-scale understanding of the role of liver and hepatocyte derived factors in the LPS response of the organism to:

- Intra- to intercellular to whole-body scale
- integrate experimental data into a mathematical model, which relies on models within several submodules
- test the hypothesis that response of the liver predominantly includes communication between hepatocytes, Kupffer cells, sinusoidal endothelial cells & hepatic stellate cells.

LIAM (Zerial & Drasdo)

- Regulation and control of bile flow in normal and diseased liver based on detailed study of liver micro-architecture
- Flow, zonation & osmotic gradients control cellular uptake
- Interplay of factors controlling flow integrated in a multiscale model reflecting physical constraints involved in function.

> IMAGING

- 3D-structure of liver tissue and its dynamics in vivo.
- high- & super-resolution light & electron microscopy, intra-vital imaging
- multi-scale quantitative understanding of tissue organisation

> MODELLING:

- A tissue structure model based on 3D organisation
- A fluid mechanics model: blood flow, bile flux and processes important in flow control.

\succ VALIDATION:

Intra-vital imaging, Genetic perturbations, Pharmacological perturbations

3D tissue architecture after serial block-face EM

reconstruction of bile canaliculi & sinusoidal networks

f Education

In Vivo Translation (Küpfer, Hengstler, Kerb)

Federal Ministry of Education and Research

110010010100100

Physiology-based pharmacokinetic (PBPK) modelling

1010100101010101010 010010101001101010101010101

Physiology-based pharmacokinetic (PBPK) modelling

Physiology-based pharmacokinetic (PBPK) models

- organs are structurally included
- distribution models for generic description of mass transfer (passive and active processes)
- substance specific model-parameters are calculated from few physicochemical data
- extensive data collections of prior biological and physiological data included
- comprehensive representation of experimental data from different scales of biological organization

A unified model representation of prior physiological and (pre-)clinical knowledge.

Using gene expression data as a surrogate for tissue-specific protein abundance

PK-Sim® Express-Expression Database: ArrayExpress UniGene Literature Stomach Intestine Portal Vein Liver Gall Bladder Venous Blood Kidney Muscle Heart Fat Gonads Skin Bone Brain Spleen Lung Arterial Blood

E	MBL-EBI	:	EB-eye All Database	s 💌	Enter Text Here	2	G	Reset ? Advanced Search	Give us feedback				
	Databases	Tools	EBI Groups	Training	Industry	About Us	Help	Site	Index <u>ର</u>				
	Experiment, citation, sample and factor annotations [clear] Filter on [reset] Display options [reset] E-GEOD-2361 Any species V 25 V experiments per page												
	Match whole words Loaded in Gene Expression Atlas												
	Submitter/reviewer login ArrayExpress Browser Help												
	ID		Title						J	Assays Species	_	Date Processed	Raw
	E E-GEOD	2361	Transcription profilin	g of 36 norma	al human tissue	types to identif	y tissue-specific	genes		36 Homo sapier	ns	2007-11-21	

S NCBI	UniGene								
All Databases	PubMed Nucleotide Protein Genome Structure OMIM PMC Journals Books								
Search UniGene	✓ for Go Clear								
	Limits Preview/Index History Clipboard Details								
UniGene Homepage FAQs Query Tips Library Browser	UniGene: An Organized View of the Transciptome. Each UniGene entry is a set of transcript sequences that appear to come from the same transcription locus (gene or expressed pseudogene), together with information on protein similarities, gene expression, cDNA clone reagents, and genomic location.								

Table 1. Total RNA Source Information and Values for Human β -Actin and P450 mRNAs in Various Tissues											
СҮР	Iiver	Fetal liver	Small in- testine	Kidney	Adrenal gland	Lung	Brain	Prostate	Testis	Uterus	Placenta
CYP1A1	0.0594	0.000272	0.00176	0.000239	0.00677	0.0679	0.000388	0.00465	0.00215	0.0201	0.00101
CYP1A2	4.77	BLQ	BLQ	0.000021	0.00113	0.000119	BLQ	0.000740	0.00141	0.00193	BLQ
CYP1B1	0.00578	0.000622	0.0128	0.0139	0.0144	0.0167	0.00174	0.104	0.0197	0.0413	0.00490
CYP2A6/7	27.8	0.199	0.00193	0.00188	0.0105	0.0622	0.00867	0.00809	0.0187	0.0390	0.0231

SPOALSHID IN THE

Federal Ministry of Education and Research

110010010100100

Vertical model integration

Vertical model integration

Federal Ministry of Education and Research

SPORTORIO EN THE

Vertical model integration

Federal Ministry of Education and Research

Integrating hepatic metabolism into a whole-body model

Gille et al., *MSB, 2009* Krauss et al., *PLoS Comp Biol, 201*2

Federal Ministry

of Education and Research

Federal Ministry

of Education and Research

Allopurinol treatment of hyperuricemia

Allopurinol treatment of hyperuricemia

SPOALSHUD BY THE

Federal Ministry of Education and Research

Paracetamol intoxication

Paracetamol intoxication

A toxic dose of paracetamol significantly affects the correct execution of metabolic functions of the hepatocyte

Spatio-Temporal Simulation of First Pass Drug Perfusion in the Liver

A spatio-temporal model of the liver

a spatially-resolved model of the liver

Federal Ministry of Education and Research

Spatio-temporal distribution within the liver

Visualization of a 2 second pulse of carboxyfluorescein diacetate succinimidyl ester (CFDA SE) within the liver

Visualization of pathophysiological states in the spatially resolved liver model

ONLORID BY THE

Simulation of an isolated perfused liver

Spatio-temporal concentration profiles in an isolated perfused liver

Translational Studies

PBPK-based Cross-Species Extrapolation

Cross-species extrapolation in clinical development

First in man studies are a critical step in drug development:

- limited physiological comparability of different species
- different genetic/enzymatic setup of different species
- caution needed in terms of patient safety

Cross-species extrapolation

Which information in PBPK models is the most important?

Consideration of four PBPK parameter domains:

- Species specific physiology (SP)
- Gene expression, i.e. tissue-specific protein abundance (EX)
- Kinetic paramers (KP)
- Fraction unbound (FU)

Consideration of 10 exemplary drugs

Exemplary consideration of ten different drugs (*i.v.*)

Drug	$\operatorname{Log} P$	MW (g/mol)	pKa
Torsemide ²¹	0.57^{22}	348.40^{22}	7.10^{22}
Talinolol ²³	2.30^{24}	363.50^{25}	9.43^{25}
Midazolam ²⁶	2.70^{27}	325.77^{28}	6.04^{28}
Caffeine ²⁹	-0.07^{28}	194.20^{28}	10.40^{28}
Morphine ³⁰	0.89^{28}	285.30^{28}	8.2028
Docetaxel ³¹	2.92^{28}	807.88^{28}	10.96^{28}
Dextromethorphan ³²	3.60^{28}	271.39^{28}	9.85^{28}
Cyclosporine ³³	3.64^{28}	1202.60^{28}	11.83^{28}
Erythromycin ³⁴	3.06^{28}	733.92^{28}	8.88^{28}
Pravastatin ³⁵	1.65^{28}	424.53^{28}	4.56^{28}

Route of degradation is governed by a single reaction

Drug	Primary Route of Degradation	Species	Log P	F_{U}	Enzyme/ Transporter	K _M (μ mol/L)	v _{max} ^a (µmol/(L*min))
Torsemide	Metabolic ²⁸	Human	0.57	0.024^{36}	CYP2C9	11.20^{63}	12.22
		Mouse	0.57	0.050^{64}	Cyp2c55	5.20^{b}	2.71
Talinolol	Renal ⁶⁵	Human	2.27	0.300^{25}	ABCB1	0.69^{a}	2.13
		Mouse	2.73	0.650^{34}	Abcb1a	100.00^{66}	44234.00
Midazolam	Metabolic ²⁸	Human	2.89	0.024^{28}	CYP3A4	2.20^{67}	23.54
		Mouse	2.95	0.057^{68}	Cyp3a ^c	1.35^{b}	19.30
Caffeine	Metabolic ²⁸	Human	0.07	0.700^{28}	CYP1A2	400.00^{69}	30.40
		Mouse	0.07	0.850^{70}	Cyp1a2	452.00^{b}	167.10
Morphine	Metabolic ²⁸	Human	1.45	0.700^{28}	UGT2B7	420.00^{71}	15910.00
		Mouse	1.45	0.820^{71}	$Ugt2b^{c}$	28.70^{b}	115.30
Docetaxel	Metabolic ⁷²	Human	2.92	0.050^{73}	CYP3A4	1.10^{74}	144.40
		Mouse	2.92	0.100^{75}	$Cyp3a^{a}$	10.30^{74}	31.50
Dextromethorphan	Metabolic ²⁸	Human	3.15	0.295^{76}	CYP2D6	3.70^{77}	7.00
		Mouse	3.20	0.200^{76}	Cyp2d22	250.00^{78}	1885.00
Cyclosporine	Metabolic ³⁷	Human	3.71	0.127^{79}	CYP3A4	2.10^{80}	45.30
		Mouse	3.69	0.062^{81}	$Cyp3a^{c}$	5.90 ⁸⁰	4.10
Erythromycin	Metabolic ²⁸	Human	3.06	0.145^{82}	CYP3A4	44.00^{83}	42.05
		Mouse	3.06	$0.464^{82,84}$	Cyp3a ^c	7.50^{85}	79.30
Pravastatin	Biliary, renal ²⁸	Human	1.65	0.500^{86}	ABCC2	223.00^{87}	495.20
					OATP1B1	11.5088	5.50
		Mouse	1.65	0.730^{89}	Abcc2	223.00^{87}	405.90
					Oatp1b2	11.50^{88}	2.50

PBPK models of 10 different drugs for both mouse and humans

Cross-species extrapolation

Consideration of four PBPK parameter domains:

- Species specific physiology (SP)
- Gene expression, i.e. tissue-specific protein abundance (EX)
- Kinetic paramers (KP)
- Fraction unbound (FU)

15 combinations × 10 drugs × 2 directions (m2h, h2m) = **300 cases considered**

Benchmarking the benefit of using different combinations of parameter domains

Evaluating the benefit of using additional degree of prior information (i.e. PBPK parameter domains)

protestation in the Fectorial Ministry

of Education and Research

Cross-species extrapolation in clinical development

The relative change (RC) of using different combinations of parameter domains relative to using the naive approach (benchmark) shows significant variability for the ten drugs, yet obvious trends.

Statistical analysis of 300 cross-species extrapolations

Statistical analysis of the results identifies the following key results

- 1. Species-specific physiology is of major relevance
- 2. If using all available information, 83.5% of model agreement can be reached
- 3. Expression data must only be used together with corr. kinetic parameters.

POLIZED IN 1-4 Federal Ministry of Education and Research

Translational Studies

Statin pharmacogenomics

A mechanistic explanation, however, is lacking as of now

Model-based risk assessment in pharmaceutical R&D

- 1. establishment of reference PBPK models
- 2. model evaluation at relevant scales
- simulation of virtual populations and model evaluation
- 4. calculation of toxicodynamic (TD) markers
- 5. evaluation of the safety risk
- 6. prediction of drug safety
 - a. dose to dose
 - b. drug to drug
 - c. patient to patient extrapolation

Model is predictive for pharmacokinetic phenotypes

Model-based risk assessment in pharmaceutical R&D

- 1. establishment of reference PBPK models
- 2. model evaluation at relevant scales
- simulation of virtual populations and model evaluation
- calculation of toxicodynamic (TD) markers
- 5. evaluation of the safety risk
- 6. prediction of drug safety
 - a. dose to dose
 - b. drug to drug
 - c. patient to patient extrapolation

Population simulations

Genotype-specific virtual patient populations (n=1000 individuals).

Model-based risk assessment in pharmaceutical R&D

- 1. establishment of reference PBPK models
- 2. model evaluation at relevant scales
- simulation of virtual populations and model evaluation
- calculation of toxicodynamic (TD) markers
- 5. evaluation of the safety risk
- 6. prediction of drug safety
 - a. dose to dose
 - b. drug to drug
 - c. patient to patient extrapolation

Calculation of a toxicodynamic (TD) marker for statin toxicity

Model-based estimation of drug exposure in the target tissue

An in vivo marker for statin toxicity

Cumulated distributions of the toxico-dynamic marker for different genotypes

The toxicodynamic marker is considerably higher for simvastatin, which is in agreement with observations in clinical practice.

POALORID IN THE

Lippert et al., CPT:PSP, 2012

Federal Ministry of Education and Research

Model-based risk assessment in pharmaceutical R&D

- 1. establishment of reference PBPK models
- 2. model evaluation at relevant scales
- simulation of virtual populations and model evaluation
- 4. calculation of toxicodynamic (TD) markers
- 5. evaluation of the safety risk
- 6. prediction of drug safety
 - a. dose to dose
 - b. drug to drug
 - c. patient to patient extrapolation

Prediction of clinical incidence rates for the rare CC-subpopulations.

A model-based approach to safety assessment in clinical development

Bayesian PBPK

Bayesian PBPK

DOM STREET, INC.

Federal Ministry of Education and Research

PBPK model for pravastatin

Pravastatin:

- low lipophilicity
- degradation by sulfotransferases in various tissues
- uptake and secretion by active transport processes in various tissues: OATP1B1, OAT3, MRP2
- ➔ protein abundance was estimated by using tissue-specific gene expression levels a surrogate

Variability of pravastatin pharmacokinetics

200 parameter vectors from the posterior distribution obtained with Bayesian PBPK were used to perform population PK simulations **Quantification of inter-individual variability**

Niemi et al., *Clin Pharmacol Ther*, 2006 Krauss et al., *In silico pharmacol*, 2013

roazzano avitva incheral Minist

of Education and Research

Identification of subgroups

The distribution of OATP1B1 transporter efficacy (k_{cat}) shows a bi-modal behavior indicating the existence of specifc patient subgroups!

Plotting OATP1B1 transporter efficacies for patients with known OATP1B1 genotype can be assigned to the two different subgroups → Huge potential for (early) clinical development

proasance in the Federal Ministry

of Education and Research

Summary

 models of the liver as the key detoxification organ in the human body

 representation of the liver within the context of the organism

• clinical translation

Acknowledgements

Ahmed Ghallab Jan Hengstler

UNIVERSITÄTSKLINIKUM Schleswig-Holstein

Mario Brosch Oliver von Kampen Witigo v. Schönfels Clemens Schafmayer Jochen Hampe

UNIVERSITÄT LEIPZIG

Sebastian Zellmer Rolf Gebhardt Stefan Hoehme Dirk Drasdo

Bayer Technology Services

Michaela Meyer Hans-Ulrich Siegmund Linus Goerlitz Markus Krauss Sebastian Schneckener Jörg Lippert Lars Kuepfer

> Dle Schwen Tobias Preusser

IPO&IDRID IN THE

Federal Ministry of Education and Research