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Motivation

+ Start from assumption that we are interested in the absorption profile
- Want to IVIVC
- Examine formulation performance
- What do we do when we can't apply standard deconvolution:
- No unit impulse response
- Nonlinear processes

- Time-varying PK (e.g. enterohepatic recirculation, enzyme
induction)
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What's wrong with numerical deconvolution?

+ Nothing! If it's applicable use it.
- Often don't have correct data to use deconvolution
- No unit impulse (IV or IR data) collected.
- No UIR means we can't characterize the PK model
- No individual UIR (maybe from literature or another study)
- Introduces bias
+ Or deconvolution isn't applicable:
- nonlinearity in clearance
- complicated PK model (largely a limitation in the tools)

- time varying PK mode|
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Modeling as an alternative

+ Removes most limitations
- We can easily model nonlinearity, time-varying, etc...
- Can combine data across subjects and studies

- We have a framework for comparing options (likelihood, etc.)

+ Need some proposal for functional form of absorption

Can work really well if we guess correctly

Can introduce a lot of bias if we guess poorly

Imposes our prior belief into the analysis

May be over-parameterized or, if not, not flexible enough

+ Maybe we can specify something really flexible
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Proposal for a flexible absorption function

- What if instead of saying absorption must have some form, say it could
have almost any form

+ Continuous random processes
- Basically attribute noise in absorption phase of profile to time-

varying k,
- Allows for absorption rate to be almost any value, but

- Constrains it to be most likely somewhere
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Wiener Process

The Wiener Process is a random walk W (t) with:

* initial value: W(0) =0

* expected value: E[W (t)] =0

+ value is a sum of independent, normally distributed increments
- W(t) —W(s) ~ N0,t —s), for0<s<t

- that is the variance is proportional to Atime
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Wiener Process in Action
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Modeling a Wiener Process

Given that the Wiener Process, W, is either directly or indirectly observed
over asetT = {t1,12,t3,---}, define:

Z'wz, ;Y N 0 (Tz —Ti_1)0'2)

The increments of W, w;, are independent and can be transformed to
identically distributed normal variables:

1
=(T; —Ti-1)®n;, m; ~N(0,0%)
Then attach W to an observed or latent variable (like &, ):

log(ka) = brogr, + W(Ti)

Solve a mixed effects model using appropriate tools.
8/20



How does it work?

+ The observed data carry information about the parameters

- Early points have a lot of information about k,
- Later points have a lot of information about k.
* w; are adjusted to better fit the absorption phase
* As drug is fully absorbed, k, becomes less influential on the fit

* If the terminal phase is sampled well enough k. can be estimated
+ A population approach can be used to help ground parameter values

- k. and V would have likely values and tend towards those

+ Can try different PK models
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How well does it work?

Modeling of Pharmacokinetic Systems Using Stochastic Deconvolution
Kakhi and Chittenden; JPharmSci 102:4433-4443, 2013

- Evaluated the performance of stochastic deconvolution on three
simulated datasets:
- Linear time-invariant (LTI)
- Michaelis-Menten elimination
- Enterohepatic circulation (EHC)
- Common features:
- three formulations (fast, medium, slow)
- inter-subject variability in PK parameters

Note: We (ab)use the term "deconvolution" here to signify that we're
trying to recover the input process.
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imulated data
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The data are well estimated
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Estimated absorption profiles (LTI)
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Estimated &, profiles (LTI)
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Second peak in EHC is identified
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Overall performance

EHC LTI
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High correlation between known and estimated absorption.

Additional scatter in known EHC absorption due to variability in PK
model.
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Conclusion

* Arandom process model can identify time varying k,

* Time varying k, can estimate complicated absorption profiles

- Allows "deconvolution" in cases where it is not otherwise applicable
+ The process can be applied across multiple subject/studies
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Applications and Future work

+ This methodology has already been used in practice

- Not just for identifying absorption, but also to evaluate other time-
varying parameters (e.g. clearance).

- Gain insights to use for refining models.

- Bypass detailed absorption model yet get good estimates of the
other parameters (e.g. V, CL, post-hocs).

-+ There is some similarity between this approach and SDE (filtering
approaches)

- SDE modeling in NONMEM is still tricky. Stochastic deconvolution is
more accessible.

- Compare Stochastic Deconvolution and SDE approaces.
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