Solutions to non-ideal reference data: Stochastic Deconvolution

Jason Chittenden 6 November 2014

Motivation

- Start from assumption that we are interested in the absorption profile
 - Want to IVIVC
 - Examine formulation performance
- What do we do when we can't apply standard deconvolution:
 - No unit impulse response
 - Nonlinear processes
 - Time-varying PK (e.g. enterohepatic recirculation, enzyme induction)

What's wrong with numerical deconvolution?

- Nothing! If it's applicable use it.
- Often don't have correct data to use deconvolution
 - No unit impulse (IV or IR data) collected.
 - No UIR means we can't characterize the PK model
 - No individual UIR (maybe from literature or another study)
 - Introduces bias
- Or deconvolution isn't applicable:
 - nonlinearity in clearance
 - complicated PK model (largely a limitation in the tools)
 - time varying PK model

Modeling as an alternative

- Removes most limitations
 - We can easily model nonlinearity, time-varying, etc...
 - Can combine data across subjects and studies
- We have a framework for comparing options (likelihood, etc.)
- Need some proposal for functional form of absorption
 - Can work really well if we guess correctly
 - Can introduce a lot of bias if we guess poorly
 - Imposes our prior belief into the analysis
 - May be over-parameterized or, if not, not flexible enough
- Maybe we can specify something really flexible

Proposal for a flexible absorption function

- What if instead of saying absorption must have some form, say it could have almost *any form*
- Continuous random processes
 - Basically attribute noise in absorption phase of profile to time-varying k_a
 - Allows for absorption rate to be almost any value, but
 - Constrains it to be most likely somewhere

Wiener Process

The Wiener Process is a random walk W(t) with:

- initial value: W(0) = 0
- expected value: E[W(t)] = 0
- value is a sum of independent, normally distributed increments
 - $W(t)-W(s)\sim N(0,t-s), \hspace{1em} ext{for} \hspace{1em} 0\leq s\leq t$
 - that is the variance is proportional to $\Delta time$

Wiener Process in Action

Modeling a Wiener Process

Given that the Wiener Process, W, is either directly or indirectly observed over a set $T = \{t_1, t_2, t_3, \dots\}$, define:

$$W(T_i) = \sum_{t \leq T_i} w_i, \hspace{1em} w_i \sim N(0, (T_i - T_{i-1})\sigma^2)$$

The increments of W, w_i , are independent and can be transformed to identically distributed normal variables:

$$w_i = (T_i - T_{i-1})^{rac{1}{2}} \eta_i, \hspace{1em} \eta_i \sim N(0,\sigma^2)$$

Then attach W to an observed or latent variable (like k_a):

$$\log(k_a) = heta_{\log k_a} + W(T_i)$$

Solve a mixed effects model using appropriate tools.

How does it work?

- The observed data carry information about the parameters
 - Early points have a lot of information about k_a
 - Later points have a lot of information about k_e
- w_i are adjusted to better fit the absorption phase
- As drug is fully absorbed, k_a becomes less influential on the fit
- If the terminal phase is sampled well enough k_e can be estimated
- A population approach can be used to help ground parameter values
 - k_e and V would have *likely* values and tend towards those
- Can try different PK models

How well does it work?

Modeling of Pharmacokinetic Systems Using Stochastic Deconvolution Kakhi and Chittenden; JPharmSci 102:4433-4443, 2013

- Evaluated the performance of stochastic deconvolution on three simulated datasets:
 - Linear time-invariant (LTI)
 - Michaelis-Menten elimination
 - Enterohepatic circulation (EHC)
- Common features:
 - three formulations (fast, medium, slow)
 - inter-subject variability in PK parameters

Note: We (ab)use the term "deconvolution" here to signify that we're trying to recover the input process.

Simulated data

The data are well estimated

Estimated absorption profiles (LTI)

Multiple profiles show the effect of truncating the random walk.

13/20

Estimated k_a profiles (LTI)

Note: Baseline k_a is continuous vs. estimated stepwise process

Second peak in EHC is identified

Overall performance

- High correlation between known and estimated absorption.
- Additional scatter in known EHC absorption due to variability in PK model.

Conclusion

- A random process model can identify time varying k_a
- Time varying k_a can estimate complicated absorption profiles
- Allows "deconvolution" in cases where it is not otherwise applicable
- The process can be applied across multiple subject/studies

Applications and Future work

- This methodology has already been used in practice
 - Not just for identifying absorption, but also to evaluate other timevarying parameters (e.g. clearance).
 - Gain insights to use for refining models.
 - Bypass detailed absorption model yet get good estimates of the other parameters (e.g. V, CL, post-hocs).
- There is some similarity between this approach and SDE (filtering approaches)
 - SDE modeling in NONMEM is still tricky. Stochastic deconvolution is more accessible.
 - Compare Stochastic Deconvolution and SDE approaces.