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Mavoglurant

• Mavoglurant (MVG) is a structurally novel antagonist at the metabotropic 
glutamate receptor 5, currently under clinical development at Novartis Pharma AG 
for the treatment of CNS diseases.

• An oral immediate-release (IR) formulation was initially used in the Phase I clinical 
studies:
 Most of the adverse events (e.g. dizziness, fatigue, hallucination etc.) were related to 

peak plasma concentrations

• An oral modified-release (MR) formulation was developed in order to reduce 
peak concentrations without substantial change in the systemic exposure.

• The pharmacokinetics (PK) of the IR and MR formulations were compared in a 
cross-over study in healthy subjects (Study A2167, n=44).

• Since MVG is considered as a BDDCS class II compound, food effect was also 
investigated for the MR formulation.

• The PK of MVG following a brief intravenous (IV) infusion (10 min) was also 
evaluated in another study in healthy volunteers (Study A2121, n=120). 2



Plasma concentration-time profiles
Oral administration ; cross-over design

 Complex and highly variable profiles

 Food effect on the MR formulation’s PK
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Plasma concentration-time profiles 
IV administration
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 Bi-exponential decrease

 No sign of non-linearity with dose 



Motivation for a population PK analysis

• Describe MVG disposition in the population and identify any contributing 
demographic covariates.

• Compare the input characteristics (rate and extent) of the IR and MR formulation.

• Quantify the effect of a high fat meal  on the bioavailability and input rate of the 
MR formulation.

• Predict the impact of MVG release-rate and of food intake on the steady-state 
concentration range provided by a twice-daily repeated administration of the oral 
formulations.
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Adequate input model !



Modelling complex extravascular PK profiles

• Conventional models that assume a first-order or zero-order input rate for a fixed 
period are inadequate to model complex concentration-time profiles:

• Development of a more mechanistic model (incorporating drug dissolution, 
absorption, gut-wall metabolism etc.) can be time consuming and is challenging 
when only little drug- and formulation-specific prior information is available.

• Alternatively, a flexible empirical function can be used to model the rate of input 
into the system:
 Polynomial (Cutler, 1978)

 Cubic spline (Fattinger and Verrota, 1995)

 Gamma distribution (Weiss, 1983)

 Weibull distribution (Bresolle et al, 1994)

 Inverse Gaussian distribution (Weiss, 1996)

 Etc. 6



Inverse Gaussian (IG) distribution
Density function
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Two parameters:
 The mean of the distribution µ
 The relative dispersion of the mean CV

(skewness)

 When CV tends to 0, the IG distribution becomes a Normal distribution (symmetrical)
 More flexible than the log-normal distribution (Chhikara and Folks, 1977)

7



IG distribution
Mode
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The mode is more informative: time at which the input rate reaches its maximum
 Convenient for initial parameter values
 Easier interpretation of results
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How to capture multiple-peak profiles?

• The input function needs to be multi-modal.

• This can easily be done by summing IG 
functions that are naturally ordered by their 
mode (avoid flip-flop).
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A weighted sum of n IG functions as an input 
rate function

• The absolute bioavailability F can be directly estimated if IV data are available.

• The parameters fj are the weights for the IG functions (fraction of bioavailable-
dose) such that:

• The number of structural parameters is n x 3:

 F, fj, tmaxj, CVj for j=1,..,n

 fn is derived from the fj (j=1,…,n-1) rather than estimated, to constrain the sum
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Stochastic model for a sum of IG functions as 
input function

• Using a sum of IG functions as an input function, one approach to build the 
statistical model is to assign a random-effect on each parameter of each IG 
function (Csajka et al, 2005), and assess the parameter estimates and precisions 
(deterministic identifiability).

• However, it is more “reasonable” to estimate the same variance for the random-
effects of the n tmax, as well as for those of the n CV (e.g. option “SAME” in 
NONMEM®)

 The number of parameters is reduced (more numerically stable)

 The cost is a decrease in flexibility

• Bootstrapping can be applied to check that the estimated variance of a random-
effect is statistically significantly different from zero and has a reasonable 
precision.
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Constraining the subject-specific input parameters

• To ensure that the IG densities are naturally ordered (important for structural 
identifiability), the constraint tmaxj,i ≥ tmaxj-1,i was imposed as follows:

• To be consistent with physiology, the constraint 0 ≤ Fi ≤ 1 was imposed by 
defining F as logit-normally distributed within the population.

• Constraining the joint distribution of the fj parameters such that:

while ensuring that 0 ≤ fj,i ≤ 1 (for j=1,…,n), can be performed by use of a multivariate 
logistic-normal distribution (Tsamandouras et al, 2014; in manuscript).
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Impact of formulation and food intake on MVG 
input kinetics

• It was obvious from the raw data that MVG input properties depend on the 
formulation and food conditions at drug administration.

• Therefore, the input rate function was estimated specifically for each 
formulation-food condition rather than testing these factors as categorical 
covariates for the input parameters.

• Each subset of data was first analysed together with IV data to determine the 
optimal number of IG terms for each input function.

• Subsequently, all data were pooled and analysed using NONMEM®.

• The model was implemented as a system of two ODEs:
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Structure of MVG population PK model
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 The volume terms are functions a of subject’s bodyweight (BW):
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Goodness-of-fit
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Individual predictionsObserved concentrations Population predictions



Visual predictive check of the model
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90% prediction interval Median of the predicted concentrationsObserved concentrations



Application of the input model
Simulation of the time course of the input rate and F
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where IGcdfj(t) is the jth IG cumulative distribution function (cdf).

• The IG cdf can be called in the software R for instance (pinvgauss)  but is 
parameterized in terms of µ and λ:
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and

• The derived input functions Iformulation,food(t) can be used directly to simulate the time 
course of the input rate for each formulation-food condition.

• The time course of the bioavailability can be simulated using the following function :



Input rate / bioavailability versus time profiles
Standard individual in the population
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MR-fastedIR-fasted MR-fed

Formulation effect

Food effect



Using an empirical input model for multiple doses 
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• To eliminate the assumption that a dose has been completely absorbed prior to the next 
dosing event, dose superimposition should be implemented when using the analytical 
solution of the input model for a repeated dose design.

• Using NONMEM®, dose superposition can be implemented in a user-defined FORTRAN 
subroutine.

• The method was adapted to the use  of a sum of IG functions as input function.
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Does dose superimposition need to be 
implemented?

20

Twice-daily administration

12 h

≈ 25%

MR-fastedIR-fasted MR-fed



Application of the PK model
Simulation of the steady-state concentration range
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95% prediction interval Median of the predicted concentrations

 The MR formulation provides a slightly lower steady-state concentration range than the IR 
formulation, with lower peaks (possibly better drug tolerance).

 The steady-state exposure to MVG strongly depends on the food state at each administration of 
the MR formulation.

100-mg twice daily



Neglecting dose superimposition
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The difference depends on the duration of the input process !



Conclusions on MVG population PK model
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• Advantages: 

 Easy implementation and fast analysis runs

 Disposition model mechanistic enough to evaluate the impact of covariates (e.g. 
demographics)

 Very flexible input model that can capture complex profiles with multiple peaks

 Although empirical, the derived input function helps to gain insight into the input 
process (e.g. comparison of the time course of bioavailability between formulations)

• Disadvantages :

 Can’t extrapolate beyond the studied population and experimental conditions (e.g. 
other disease states or age/weight range) due to its descriptive/empirical nature

 Doesn’t provide much information about the absorption process itself and the first-pass 
effect

 Predicting concentrations in clinically relevant tissues is not possible (i.e. target sites and 
tissues exposed to drug toxicity)



Perspectives
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• Develop a physiologically-based PK model for MVG in order to:

 Gain insight into the underlying mechanisms of absorption, distribution and 
elimination

 Predict concentrations in clinically relevant tissues (e.g. brain)

 Extrapolate outside the studied population such as in a paediatric population

• Reduce the model using proper lumping technics and keeping clinically 
relevant tissues in the model (Dokoumetzidis and Aarons, 2009).

• Optimise the model based on clinical data using a Bayesian approach 
(Gueorguieva et al, 2006)

 Integrate the preclinical knowledge

 Circumvent structural identifiability issues
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Back up
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Flexibility of the input model
9/1000 simulated profiles
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MR-fasted


