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Mavoglurant

• Mavoglurant (MVG) is a structurally novel antagonist at the metabotropic 
glutamate receptor 5, currently under clinical development at Novartis Pharma AG 
for the treatment of CNS diseases.

• An oral immediate-release (IR) formulation was initially used in the Phase I clinical 
studies:
 Most of the adverse events (e.g. dizziness, fatigue, hallucination etc.) were related to 

peak plasma concentrations

• An oral modified-release (MR) formulation was developed in order to reduce 
peak concentrations without substantial change in the systemic exposure.

• The pharmacokinetics (PK) of the IR and MR formulations were compared in a 
cross-over study in healthy subjects (Study A2167, n=44).

• Since MVG is considered as a BDDCS class II compound, food effect was also 
investigated for the MR formulation.

• The PK of MVG following a brief intravenous (IV) infusion (10 min) was also 
evaluated in another study in healthy volunteers (Study A2121, n=120). 2



Plasma concentration-time profiles
Oral administration ; cross-over design

 Complex and highly variable profiles

 Food effect on the MR formulation’s PK
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Plasma concentration-time profiles 
IV administration
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 Bi-exponential decrease

 No sign of non-linearity with dose 



Motivation for a population PK analysis

• Describe MVG disposition in the population and identify any contributing 
demographic covariates.

• Compare the input characteristics (rate and extent) of the IR and MR formulation.

• Quantify the effect of a high fat meal  on the bioavailability and input rate of the 
MR formulation.

• Predict the impact of MVG release-rate and of food intake on the steady-state 
concentration range provided by a twice-daily repeated administration of the oral 
formulations.
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Adequate input model !



Modelling complex extravascular PK profiles

• Conventional models that assume a first-order or zero-order input rate for a fixed 
period are inadequate to model complex concentration-time profiles:

• Development of a more mechanistic model (incorporating drug dissolution, 
absorption, gut-wall metabolism etc.) can be time consuming and is challenging 
when only little drug- and formulation-specific prior information is available.

• Alternatively, a flexible empirical function can be used to model the rate of input 
into the system:
 Polynomial (Cutler, 1978)

 Cubic spline (Fattinger and Verrota, 1995)

 Gamma distribution (Weiss, 1983)

 Weibull distribution (Bresolle et al, 1994)

 Inverse Gaussian distribution (Weiss, 1996)

 Etc. 6



Inverse Gaussian (IG) distribution
Density function
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Two parameters:
 The mean of the distribution µ
 The relative dispersion of the mean CV

(skewness)

 When CV tends to 0, the IG distribution becomes a Normal distribution (symmetrical)
 More flexible than the log-normal distribution (Chhikara and Folks, 1977)

7



IG distribution
Mode

4 29 3
1

4 2
t CV CVmax 

 
    

 

The mode is more informative: time at which the input rate reaches its maximum
 Convenient for initial parameter values
 Easier interpretation of results
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How to capture multiple-peak profiles?

• The input function needs to be multi-modal.

• This can easily be done by summing IG 
functions that are naturally ordered by their 
mode (avoid flip-flop).
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A weighted sum of n IG functions as an input 
rate function

• The absolute bioavailability F can be directly estimated if IV data are available.

• The parameters fj are the weights for the IG functions (fraction of bioavailable-
dose) such that:

• The number of structural parameters is n x 3:

 F, fj, tmaxj, CVj for j=1,..,n

 fn is derived from the fj (j=1,…,n-1) rather than estimated, to constrain the sum
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Stochastic model for a sum of IG functions as 
input function

• Using a sum of IG functions as an input function, one approach to build the 
statistical model is to assign a random-effect on each parameter of each IG 
function (Csajka et al, 2005), and assess the parameter estimates and precisions 
(deterministic identifiability).

• However, it is more “reasonable” to estimate the same variance for the random-
effects of the n tmax, as well as for those of the n CV (e.g. option “SAME” in 
NONMEM®)

 The number of parameters is reduced (more numerically stable)

 The cost is a decrease in flexibility

• Bootstrapping can be applied to check that the estimated variance of a random-
effect is statistically significantly different from zero and has a reasonable 
precision.
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Constraining the subject-specific input parameters

• To ensure that the IG densities are naturally ordered (important for structural 
identifiability), the constraint tmaxj,i ≥ tmaxj-1,i was imposed as follows:

• To be consistent with physiology, the constraint 0 ≤ Fi ≤ 1 was imposed by 
defining F as logit-normally distributed within the population.

• Constraining the joint distribution of the fj parameters such that:

while ensuring that 0 ≤ fj,i ≤ 1 (for j=1,…,n), can be performed by use of a multivariate 
logistic-normal distribution (Tsamandouras et al, 2014; in manuscript).
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Impact of formulation and food intake on MVG 
input kinetics

• It was obvious from the raw data that MVG input properties depend on the 
formulation and food conditions at drug administration.

• Therefore, the input rate function was estimated specifically for each 
formulation-food condition rather than testing these factors as categorical 
covariates for the input parameters.

• Each subset of data was first analysed together with IV data to determine the 
optimal number of IG terms for each input function.

• Subsequently, all data were pooled and analysed using NONMEM®.

• The model was implemented as a system of two ODEs:
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Structure of MVG population PK model
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 The volume terms are functions a of subject’s bodyweight (BW):
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Goodness-of-fit
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Individual predictionsObserved concentrations Population predictions



Visual predictive check of the model

16

90% prediction interval Median of the predicted concentrationsObserved concentrations



Application of the input model
Simulation of the time course of the input rate and F
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where IGcdfj(t) is the jth IG cumulative distribution function (cdf).

• The IG cdf can be called in the software R for instance (pinvgauss)  but is 
parameterized in terms of µ and λ:
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and

• The derived input functions Iformulation,food(t) can be used directly to simulate the time 
course of the input rate for each formulation-food condition.

• The time course of the bioavailability can be simulated using the following function :



Input rate / bioavailability versus time profiles
Standard individual in the population
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MR-fastedIR-fasted MR-fed

Formulation effect

Food effect



Using an empirical input model for multiple doses 
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• To eliminate the assumption that a dose has been completely absorbed prior to the next 
dosing event, dose superimposition should be implemented when using the analytical 
solution of the input model for a repeated dose design.

• Using NONMEM®, dose superposition can be implemented in a user-defined FORTRAN 
subroutine.

• The method was adapted to the use  of a sum of IG functions as input function.
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Does dose superimposition need to be 
implemented?

20

Twice-daily administration

12 h

≈ 25%

MR-fastedIR-fasted MR-fed



Application of the PK model
Simulation of the steady-state concentration range
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95% prediction interval Median of the predicted concentrations

 The MR formulation provides a slightly lower steady-state concentration range than the IR 
formulation, with lower peaks (possibly better drug tolerance).

 The steady-state exposure to MVG strongly depends on the food state at each administration of 
the MR formulation.

100-mg twice daily



Neglecting dose superimposition
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The difference depends on the duration of the input process !



Conclusions on MVG population PK model
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• Advantages: 

 Easy implementation and fast analysis runs

 Disposition model mechanistic enough to evaluate the impact of covariates (e.g. 
demographics)

 Very flexible input model that can capture complex profiles with multiple peaks

 Although empirical, the derived input function helps to gain insight into the input 
process (e.g. comparison of the time course of bioavailability between formulations)

• Disadvantages :

 Can’t extrapolate beyond the studied population and experimental conditions (e.g. 
other disease states or age/weight range) due to its descriptive/empirical nature

 Doesn’t provide much information about the absorption process itself and the first-pass 
effect

 Predicting concentrations in clinically relevant tissues is not possible (i.e. target sites and 
tissues exposed to drug toxicity)



Perspectives

24

• Develop a physiologically-based PK model for MVG in order to:

 Gain insight into the underlying mechanisms of absorption, distribution and 
elimination

 Predict concentrations in clinically relevant tissues (e.g. brain)

 Extrapolate outside the studied population such as in a paediatric population

• Reduce the model using proper lumping technics and keeping clinically 
relevant tissues in the model (Dokoumetzidis and Aarons, 2009).

• Optimise the model based on clinical data using a Bayesian approach 
(Gueorguieva et al, 2006)

 Integrate the preclinical knowledge

 Circumvent structural identifiability issues
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Back up
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Flexibility of the input model
9/1000 simulated profiles
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MR-fasted


