Pre-clinical PK/PD modelling of combination therapies in oncology: abemaciclib and vemurafenib

Sonya C. Tate, Teresa Burke, Shufen Cai, Daisy Hartman, Palaniappan Kulathaivel, Lawrence M. Gelbert, Richard P. Beckmann, Damien M. Cronier

PKUK, Bath, UK. 7th November 2014

1

Combination Therapies in Oncology

- Combination therapies in oncology have been explored and used for many decades
 - e.g. paclitaxel in combination with platinum-based therapy for first-line metastatic ovarian cancer or gemcitabine in combination with paclitaxel for HER2-negative breast cancer
- Combinations are often first explored in clinical practice; only more recently are combinations explored in pre-clinical testing
- The utility of PK/PD modelling in this area is still being explored
 - How can PK/PD help to better understand and optimise combination therapies?
 - Currently limited to empirical relationships to define additivity/synergy
- Lilly proposed a post-doctoral research opportunity to build a PK/PD platform upon which combination therapies could be explored further

Combination of Abemaciclib and Vemurafenib

- Abemaciclib is a CDK4/6 inhibitor currently in clinical development
- The CDK4/6 team were interested in potential combinations which best fit with the current therapeutic strategy
- As melanoma is an indication of interest, the team began looking at the potential benefit of combining abemaciclib with vemurafenib
 - **Vemurafenib** is currently the first-line treatment for patients with BRAF-mutated melanoma
- The semi-mechanistic PK/PD model for abemaciclib² presented an opportunity to understand such a combination from a mechanistic, quantitative standpoint

¹Gelbert et al., Invest New Drugs, 2014; ²Tate et al., Clin Cancer Res, 2014

Abemaciclib Mechanism of Action

- Abemaciclib is a potent and selective inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6) currently in clinical development
 - Abemaciclib-mediated inhibition of CDK4/6 induces cell cycle arrest
 - CDK4/6 inhibition is directly measured by activity of pRb

- Phosphorylated retinoblastoma protein (pRb)
 - Direct measure of CDK4/6 inhibition
 - Cell density in late G1 phase
- Topoisomerase II a (Topolla)
 - Cell density in S phase
- Phosphohistone H3 (pHH3)
 - Cell density in G2/M phase

Vemurafenib Mechanism of Action

- Vemurafenib is a BRAF inhibitor approved for first-line treatment of BRAFmutated metastatic (or unresectable) melanoma
 - Vemurafenib interrupts the BRAF/MEK step in the MAPK pathway
 - Vemurafenib is efficacious in patients whose melanoma has become dependent on hyperactive BRAF for survival

 Phosphorylated MEK (pMEK) and ERK (pERK) are direct markers of vemurafenib-mediated inhibition of BRAF

5

Resistance to Vemurafenib

- While vemurafenib is highly effective in the target population, resistance to treatment occurs readily and rapidly
- Treatment of vemurafenib-resistant melanoma represents an area of unmet medical need

Wagle et al., J Clin Oncol, 2011

Resistance to Vemurafenib: Biological Basis

- Resistant xenograft tumours over-express pERK¹
 - Resistant baseline levels of pERK are elevated
 - Vemurafenib-mediated inhibition still occurs
 - pERK levels remain above baseline at maximum inhibition
- In house investigations revealed²:
 - Resistance is associated with MAPK pathway reactivation and cyclin D1 upregulation
 - Inhibition of CDK4/6 (by abemaciclib) overcomes resistance and induces apoptosis
 - Cells appear to become dependent on Rb for survival; inhibition of Rb by abemaciclib is thought to mediate apoptosis

¹Thakur et al., Nature, 2014; ²Vipin et al., Mol Cancer Ther, 2013

7

Available Pre-Clinical Data

Drug(s)	Design	Data
Abemaciclib	45 and 90 mg/kg QDx1 1,6,24,36,48 h	PK, biomarkers (pRb, Topollα, pHH3, Total Rb)
Vemurafenib	15 mg/kg QDx1 1,2,6,12,24,48 h	PK, (pMEK, pERK, CyclinD1, pRb, Topollα, pHH3, Total Rb)
	7.5, 30 and 60 mg/kg QDx1 4,8,24 h	
Vemurafenib, abemaciclib	Control, Vemurafenib 15 mg/kg BIDx76, Vemurafenib 15 mg/kg BIDx48 then abemaciclib 90 mg/kg QDx28	Tumour growth

Abemaciclib and Vemurafenib PK Models

Vemurafenib

- Single dose study (7.5 60 mg/kg)
- One compartment model with non-linear absorption and linear clearance

Abemaciclib

- Simulation of previously developed mouse PK model¹
- Additional PK study confirmed lack of DDI

¹Tate et al., Clin Cancer Res, 2014.

Abemaciclib Biomarker Model

- Previously established model¹; adapted to include autoregulation of total Rb²
- Parameterisation based on cell cycle distribution allows recalibration to cell line of interest: A375
- Simulations confirmed accurate model prediction of response to abemaciclib in A375 xenograft tumours

¹Tate et al., Clin Cancer Res, 2014; ²Shan et al., Mol Cell Biol, 1994

Vemurafenib Biomarker Model

- Model combines elements of MAPK pathway and ٠ cell cycle markers
- Cell cycle model structure echoes previously • established model for abemaciclib

150

100

7.5 mg/kg

15 mg/kg

30 mg/kg

Efficacy Mediated by Vemurafenib

- The anti-tumour effects of vemurafenib are mediated by...
- ... Tumour shrinkage caused by inhibition of pERK...
- ...And tumour growth inhibition as a result of cell cycle arrest (pHH3), as demonstrated previously for abemaciclib

Accruing Resistance to Vemurafenib

Overcoming Resistance by Abemaciclib

Abemaciclib/Vemurafenib PK/PD Model

Dosing groups:

- Vehicle
- Vemurafenib 15 mg/kg BIDx76
- Sequential vemurafenib 15 mg/kg BIDx48, <u>then</u> abemaciclib 90 mg/kg QDx28

Model accurately describes:

- Uncontrolled tumour growth
- Tumour **shrinkage** in the presence of vemurafenib
- Developing **resistance** to vemurafenib

15

• **Rescue** by abemaciclib

PK/PD Model: Validation

Dosing groups:

- Vehicle
- Vemurafenib 10 mg/kg BIDx21
- Abemaciclib 45 mg/kg QDx21
- Simultaneous vemurafenib 10 mg/kg BIDx21 and abemaciclib 45 mg/kg QDx21

Model accurately describes:

- Uncontrolled tumour growth (fitted)
- Efficacy of abemaciclib and vemurafenib alone and in combination (simulated)
 - Note: short duration of therapy cells not yet resistant
- Provides an external validation of the combination PK/PD model

• Vemurafenib treatment is initially efficacious, but resistance soon occurs and tumours regrow

17

• Simultaneous treatment of abemaciclib with vemurafenib (both dosed continuously) offers additional benefit over vemurafenib alone

 Intermittent treatment with vemurafenib delays onset of resistance, thereby extending time to progression¹

• Simultaneous treatment of abemaciclib (continuous) with vemurafenib (intermittent) offers the most efficacious dosing schedule

Conclusions

- An abemaciclib/vemurafenib pre-clinical PK/PD model was established, describing:
 - Vemurafenib-mediated pERK inhibition, leading to apoptosis
 - Upregulation of the MAPK pathway, resulting in resistance to vemurafenib
 - Increased sensitivity to abemaciclib-mediated inhibition of total Rb when cyclin D1 is upregulated, resulting in apoptosis in the resistant cell
- The model was simulated in various ways to achieve:
 - External validation, by simulating mono- and combo-therapy arms and comparing to observed data
 - Further evidence of the benefit of intermittent vemurafenib dosing to delay onset of resistance
 - Support for combining continuous abemaciclib with intermittent vemurafenib to achieve excellent response in A375 melanoma xenograft tumours
- Future directions
 - The modelling efforts demonstrated the utility of semi-mechanistic PK/PD models in exploring combination therapies
 - Work is ongoing to identify projects which may significantly benefit from such analyses

Acknowledgements

Biology

- Teresa Burke
- Shufen Cai
- Vipin Yadav
- Lawrence Gelbert
- Sheng-Bin Peng
- <u>Richard Beckmann</u>

ADME

- Daisy Hartman
- Palaniappan Kulathaivel

PK/PD

- Damien Cronier
- Erl Wood PK/PD Group

