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Investigate approaches to incorporate stochastic variability in mechanistic
PK model parameters which are subject to certain constraints.

Objective

Motivation

• Population PK model parameters often need to be constrained at the individual
level due to the nature of the underlying process they represent.

 e.g., model parameters are constrained to be positive through the assumption that they 
are log-normally distributed in the population

• Increased interest on the development of hierarchical-population PBPK models,
as they offer significant advantages [1].

[1]. Tsamandouras N et al, Br J Clin Pharmacol, 2013; doi: 10.1111/bcp.12234.

• Moving from empirical to complex mechanistic model structures constraining
parameters can be challenging and particularly crucial, as they represent actual
physiological processes.



Type 1: an independent model parameter that exhibits population 
variability and needs to be bound inside a specific physiological range

Type 2: multiple correlated model parameters that exhibit population 
variability and each of them is bound inside a physiological range 

Type 3: multiple (potentially correlated) model parameters that exhibit 
population variability and their sum needs to add up to a specific 
physiological value in each individual (compositional parameters)

Constraints in population PBPK

• Types of constraints that we are often faced with in population PBPK models:
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Type 1 constraint example

• Absorption part of the model
involves system parameters
such as gastric and small
intestinal residence time
which we a priori know that
are variable in the population

• A complex population PBPK
model for simvastatin and its
metabolite simvastatin acid [1]

• Population variability in such
system parameters should
not be neglected in a
hierarchical PBPK model.

• Incorporation of variability should be performed with caution as the parameters should
be constrained at the individual level to be within a specific physiological range.

[1] Tsamandouras N et al, Submitted in Pharm Res



Type 2 constraint example

• The model involves 2 system parameters, hepatic
blood flow (𝑸𝑯) and liver volume (𝑽𝑳)

• A semi-mechanistic repaglinide model with focus on OATP1B1-mediated hepatic uptake [1]

• The stochastic part should be able to describe this covariance structure but also ensure
that each of them is constrained at the individual level within a physiological range

• In order to raise this structural model to the
population level, variability should be also assigned
in these 2 system parameters

[1] Gertz M et al, Pharm Res. 2014 Mar 13. [Epub ahead of print].

• These two parameters are known to be strongly
correlated in the population



Solution to Type 1 & 2 constraints

Type 1 & 2 constrains can be satisfied by assuming that the parameter(s) of
interest follow in the population a generalisation of the logit-normal distribution.

• The logit-normal distribution is routinely employed in PK/PD modelling to
constrain parameters inside (𝟎, 𝟏) (e.g., to model bioavailability, probability)

𝒙 ∈ 𝟎, 𝟏 ~𝒍𝒐𝒈𝒊𝒕𝑵 , if 𝒍𝒐𝒈
𝒙

𝟏 − 𝒙
~𝑵(𝝁, 𝝈𝟐)

logit

𝒙 =
𝒆𝒍𝒐𝒈𝒊𝒕

𝒆𝒍𝒐𝒈𝒊𝒕 + 𝟏

logit -1

𝒙 ∈ 𝒂, 𝜷 ~𝒈𝒍𝒐𝒈𝒊𝒕𝑵 , if 𝒍𝒐𝒈
𝒙 − 𝜶

𝜷 − 𝒙
~𝑵(𝝁, 𝝈𝟐)

glogit

𝒙 = 𝜶 +
(𝜷 − 𝜶) ∙ 𝒆𝒈𝒍𝒐𝒈𝒊𝒕

𝒆𝒈𝒍𝒐𝒈𝒊𝒕 + 𝟏

glogit -1

• This distribution can be generalised to constrain parameters inside any (𝜶, 𝜷)



Multivariate logit-normal generalisation

Generalisation of the multivariate logit-normal

Assume that  𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌
𝑻 ~ 𝑵𝒌 𝑴,𝜮

Α vector  𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌
𝑻 ~ 𝒈𝒍𝒐𝒈𝒊𝒕𝑵𝒌 can be generated by transformation of  𝒀

𝒙𝒊 = 𝒂𝒊 +
𝜷𝒊 − 𝒂𝒊 ∙ 𝒆𝒚𝒊

𝟏 + 𝒆𝒚𝒊
, where the 𝒊𝒕𝒉 element of 𝑿 is constrained between

the 𝒊𝒕𝒉 element of 𝑨 = 𝒂𝟏, 𝒂𝟐, … , 𝒂𝒌
𝑻and the 𝒊𝒕𝒉 element of 𝑩 = 𝜷𝟏, 𝜷𝟐, … , 𝜷𝒌

𝑻

Advantages of the logit-normal generalisation

(+) Bounded support, non-physiological parameter values are avoided

(+) Transformation of the normal, easily implemented in NMLEM software

(+) Very flexible probability density function



Flexibility of the logit-normal generalisation

[1]. Petersson K et al, Pharm Res. 2009;26(9):2174-2185.

Univariate case:

Flexible pdf that can describe both positively and negatively skewed
distributions with variable degree of kurtosis or even bimodality [1].



𝜧 =
𝟎. 𝟒
𝟎. 𝟏

,  𝜮 =
𝟎. 𝟓 𝟎. 𝟒
𝟎. 𝟒 𝟎. 𝟕

𝜧 =
−𝟏
𝟎

,  𝜮 =
𝟎. 𝟓 𝟎. 𝟐
𝟎. 𝟐 𝟎. 𝟓

Flexibility of the logit-normal generalisation

Multivariate case:

𝜧 =
𝟎
𝟎

, 𝜮 =
𝟎. 𝟏 𝟎
𝟎 𝟎. 𝟏

𝜧 =
𝟎
𝟎

,  𝜮 =
𝟏 𝟎
𝟎 𝟏

𝜧 =
𝟎
𝟎

, 𝜮 =
𝟎. 𝟐 −𝟎. 𝟐

−𝟎. 𝟐 𝟎. 𝟓

𝜧 =
𝟎. 𝟓

−𝟎. 𝟓
,  𝜮 =

𝟎. 𝟕 −𝟎. 𝟏
−𝟎. 𝟏 𝟎. 𝟐



Disadvantages of the logit-normal generalisation

(-) Difficult to interpret the population distribution of the physiologically
meaningful variable directly from parameter estimates.

(-) Difficult to set up prior information when estimation is performed in a formal 
Bayesian or MAP method. 

 As the prior information exists in the domain of 𝑿, how we can transmit
this information in the 𝒀 variable domain?

𝒀 = 𝒚𝟏, 𝒚𝟐, … , 𝒚𝒌
𝑻 ~ 𝑵𝒌 𝑴,𝜮

𝑿 = 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒌
𝑻 ~ 𝒈𝒍𝒐𝒈𝒊𝒕𝑵𝒌

𝑿 = 𝒇 𝒀 ?

(-) The moments of either the logit-normal or its generalisation do not have an
analytic solution.



Providing priors in the transformation domain  

• It can be easily derived that the 𝒑𝒅𝒇 of 𝑿~𝒈𝒍𝒐𝒈𝒊𝒕𝑵𝒌 is:

• Τhe moments of the 𝒈𝒍𝒐𝒈𝒊𝒕𝑵𝒌 can be then computed by numerical integration

𝒇 𝒙𝟏, … , 𝒙𝒌 =
𝟏

𝟐𝝅 𝒌 ∙ 𝜮
∙ 𝒆−

𝟏
𝟐 𝒁−𝑴 𝑻∙𝜮−𝟏∙ 𝒁−𝑴 ∙ 

𝒊=𝟏

𝒌
𝜷𝒊 − 𝒂𝒊

𝒙𝒊 − 𝒂𝒊 ∙ 𝜷𝒊 − 𝒙𝒊

, where  𝒁 = 𝒛𝟏, 𝒛𝟐, … , 𝒛𝒌
𝑻 and  𝒛𝒊 = 𝒍𝒐𝒈

𝒙𝒊−𝜶𝒊

𝜷𝒊−𝒙𝒊

, 𝒙𝒊 ∈ 𝒂𝒊, 𝜷𝒊

𝑬 𝒙𝒊 =  

𝒂𝒌

𝜷𝒌

…  

𝒂𝟐

𝜷𝟐

 

𝒂𝟏

𝜷𝟏

𝒙𝒊 ∙ 𝒇 𝒙𝟏, … , 𝒙𝒌 𝒅𝒙𝟏𝒅𝒙𝟐…𝒅𝒙𝒌

𝑽𝒂𝒓 𝒙𝒊 =  

𝒂𝒌

𝜷𝒌

…  

𝒂𝟐

𝜷𝟐

 

𝒂𝟏

𝜷𝟏

𝒙𝒊 − 𝑬 𝒙𝒊
𝟐
∙ 𝒇 𝒙𝟏, … , 𝒙𝒌 𝒅𝒙𝟏𝒅𝒙𝟐…𝒅𝒙𝒌

𝑪𝒐𝒗 𝒙𝒊, 𝒙𝒋 =  

𝒂𝒌

𝜷𝒌

…  

𝒂𝟐

𝜷𝟐

 

𝒂𝟏

𝜷𝟏

𝒙𝒊 − 𝑬 𝒙𝒊 ∙ 𝒙𝒋 − 𝑬 𝒙𝒋 ∙ 𝒇 𝒙𝟏, … , 𝒙𝒌 𝒅𝒙𝟏𝒅𝒙𝟐…𝒅𝒙𝒌



Type 1: a single model parameter that exhibits population variability and 
needs to be bound inside a specific physiological range

Type 2: multiple correlated model parameters that exhibit population 
variability and each of them is bound inside a physiological range 

Type 3: multiple (potentially correlated) model parameters that exhibit 
population variability and their sum needs to add up to a specific 
physiological value in each individual (compositional parameters)

Constraints in population PBPK

• Types of constraints that we are often faced with in population PBPK models:
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Major challenge: 

Type 3 constraint example
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• A whole-body PBPK model

• Commonly employed at the 
typical individual level

• In an hierarchical modelling 
framework, population variability 
in organ blood flows and volumes 
should be considered

• The sum of the organ blood 
flows in an individual should be 
equal to the cardiac output.

• The sum of the organ volumes in 
an individual should be equal to 
the total body volume.



𝟎 < 𝒇𝑸𝒋,𝒊
< 𝟏 𝑎𝑛𝑑  

𝒋=𝟏

𝒏𝑸

𝒇𝑸𝒋,𝒊
= 𝟏

Constraining compositional parameters
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1st step: a useful parameterisation

𝑸𝒋,𝒊 = 𝒇𝑸𝒋,𝒊 ∙ 𝑪𝑶𝒊

𝑽𝒋,𝒊 = 𝒇𝑽𝒋,𝒊 ∙ 𝑾𝑻𝑬𝒊

𝟎 < 𝒇𝑽𝒋,𝒊 < 𝟏 𝑎𝑛𝑑  

𝒋=𝟏

𝒏𝑽

𝒇𝑽𝒋,𝒊 = 𝟏



Constraining compositional parameters

[1] Farrar D et al, Toxicol Lett. 1989;49(2-3):371-385.

• In order to satisfy these constraints , it is usually proposed [1,2] that the
fractional multipliers should be sampled from the Dirichlet distribution.

• A characteristic property of a k-dimensional Dirichlet is that each of its k
components is in the (0,1) interval and their sum is adding up to 1.

• Although the Dirichlet has been used to satisfy the constraints in MC
simulations, it has not been applied in a NLME PBPK modelling framework.

[2] Krewski D et al, J Biopharm Stat. 1995;5(3):245-271.

• Here we discuss the implementation of an approach using an alternative
distribution, the multivariate logistic-normal which has similar properties to the
Dirichlet, but offers certain advantages for population PBPK modelling.



Multivariate logistic - N

𝜽𝒊 =
𝒆𝒖𝒊

 𝒊=𝟏
𝒌+𝟏𝒆𝒖𝒊

Generate a logistic-N distribution

Assume that  𝑼 = 𝒖𝟏, 𝒖𝟐, … , 𝒖𝒌
𝜯 ~ 𝑵𝒌 𝑴,𝜮

Α vector 𝜣 = 𝜽𝟏, 𝜽𝟐, … , 𝜽𝒌+𝟏
𝜯 ~ 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵 can be generated by applying a

logistic transformation on the updated vector 𝑼

• The (𝒌+1)-dimensional 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵 is defined over the 𝒌-dimensional simplex
and the drawn samples have components in (0,1) with sum adding up to 1.

Update  𝑼 by adding an additional 𝟎 element, so that 𝒖𝒌+𝟏 = 𝟎

Aitchison J et al, Biometrika. 1980;67(2):261-272.



3-dimensional logistic N example

Multivariate logistic - N

Assume that  𝑼 = 𝒖𝟏, 𝒖𝟐
𝜯~ 𝑵𝟐 𝑴,𝜮 with 𝑴 =

𝟎
𝟎

and 𝜮 =
𝟏 𝟎
𝟎 𝟏

𝜽𝟏 =
𝒆𝒖𝟏

𝒆𝒖𝟏 + 𝒆𝒖𝟐 + 𝟏

𝜽𝟐 =
𝒆𝒖𝟐

𝒆𝒖𝟏 + 𝒆𝒖𝟐 + 𝟏

𝜽𝟑 =
𝟏

𝒆𝒖𝟏 + 𝒆𝒖𝟐 + 𝟏

By updating  𝑼 and applying transformation, 

𝜽 = 𝜽𝟏, 𝜽𝟐, 𝜽𝟑
𝜯~ 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵 is defined over the 2-simplex (triangle) 

θ2



Flexibility and ability to adequately capture any inter-component correlations

• Main drawback of the Dirichlet: The components of a drawn sample have a “near
independence” structure.

• This independence assumption is very strong for physiological systems where
parameters may exhibit complicated covariance structures

• Logistic-N takes a draw of the MVN and maps it via transformation to the simplex.
Therefore, takes advantage of the covariance structure of the MVN to create
random variables in the simplex with various patterns of variability and correlation.

Advantages of the multivariate logistic - N



(a): 𝜧 =
𝟎
𝟎

, 𝜮 =
𝟎. 𝟏 𝟎
𝟎 𝟎. 𝟏

(b): 𝜧 =
𝟎
𝟎

,  𝜮 =
𝟏 𝟎
𝟎 𝟏

(c): 𝜧 =
𝟎
𝟎

, 𝜮 =
𝟎. 𝟐 −𝟎. 𝟐

−𝟎. 𝟐 𝟎. 𝟓

(d): 𝜧 =
−𝟏
𝟎

,  𝜮 =
𝟎. 𝟓 𝟎. 𝟐
𝟎. 𝟐 𝟎. 𝟓

(e):  𝜧 =
𝟎.𝟓

−𝟎. 𝟓
,  𝜮 =

𝟎. 𝟕 −𝟎. 𝟏
−𝟎. 𝟏 𝟎. 𝟐

(f): 𝜧 =
𝟎. 𝟒
𝟎. 𝟏

,  𝜮 =
𝟎. 𝟓 𝟎. 𝟒
𝟎. 𝟒 𝟎. 𝟕

θ2
θ2 θ2

θ2 θ2 θ2



Advantages of the multivariate logistic - N 

Flexibility and ability to adequately capture any inter-component correlations

• Main drawback of the Dirichlet: The components of a drawn sample have a “near
independence” structure.

• This independence assumption is very strong for physiological systems where
parameters exhibit complicated covariance structures

• Logistic N takes a draw of the MVN and maps it via transformation to the simplex.
Therefore, takes advantage of the COV structure of the MVN to create random
variables in the simplex with various patterns of variability and correlation.

Practical advantage in terms of implementation

• Transformation of the normal and can be easily coded and implemented in any
NLMEM software.



Disadvantages of the multivariate logistic - N 

• Parameter estimation is performed in the 𝑵𝒌 𝑴,𝜮 parameter domain and not
on the domain of the parameter of interest (𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵)

(-) Difficult to interpret results with regard to the physiological parameter
of interest

(-) Difficult to accurately specify priors

• It can be derived that the 𝒑𝒅𝒇 of 𝜣 = 𝜽𝟏, 𝜽𝟐, … , 𝜽𝒌+𝟏
𝜯 ~ 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵 is:

𝒇 𝜽𝟏, … , 𝜽𝒌 =
𝟏

𝟐𝝅 ∙ 𝜮
∙  

𝒊=𝟏

𝒌+𝟏

𝜽𝒊

−𝟏

∙ 𝒆−
𝟏
𝟐 𝒁−𝑴 𝑻∙𝜮−𝟏∙ 𝒁−𝑴

,𝜽𝒊 ∈
𝑺𝒊𝒎𝒑𝒍𝒆𝒙 𝒌

, where  𝒁 = 𝒛𝟏, 𝒛𝟐, … , 𝒛𝒌
𝑻 ,  𝒛𝒊 = 𝒍𝒐𝒈

𝜽𝒊

𝜽𝒌+𝟏
and 𝜽𝒌+𝟏 = 𝟏 − 

𝒊=𝟏

𝒌

𝜽𝒊



𝑪𝒐𝒗 𝜽𝒊, 𝜽𝒋 =  

𝟎

𝟏

 

𝟎

𝟏−𝜽𝟏

…  

𝟎

𝟏− 𝒏=𝟏
𝒌−𝟏 𝜽𝒏

𝜽𝒊 − 𝑬 𝜽𝒊 ∙ 𝜽𝒋 − 𝑬 𝜽𝒋 ∙ 𝒇 𝜽𝟏, … , 𝜽𝒌 𝒅𝜽𝒌…𝒅𝜽𝟐𝒅𝜽𝟏

• Depending on the prior information in hand we can either fit 𝑴 and 𝜮 to
match the prior moments or directly fit 𝑴 and 𝜮 to any raw prior data.

Providing priors in the transformation domain  

• Τhe moments of the 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵 for the first k-components are not reducible
to a simple form but can be computed by numerical integration:

𝑽𝒂𝒓 𝜽𝒊 =  

𝟎

𝟏

 

𝟎

𝟏−𝜽𝟏

…  

𝟎

𝟏− 𝒏=𝟏
𝒌−𝟏 𝜽𝒏

𝜽𝒊 − 𝑬 𝜽𝒊
𝟐
∙ 𝒇 𝜽𝟏, … , 𝜽𝒌 𝒅𝜽𝒌…𝒅𝜽𝟐𝒅𝜽𝟏

𝑬 𝜽𝒊 =  

𝟎

𝟏

 

𝟎

𝟏−𝜽𝟏

…  

𝟎

𝟏− 𝒏=𝟏
𝒌−𝟏 𝜽𝒏

𝜽𝒊 ∙ 𝒇 𝜽𝟏, … , 𝜽𝒌 𝒅𝜽𝒌…𝒅𝜽𝟐𝒅𝜽𝟏



Application in an empirical absorption model

• The example derived during the population PK modelling of plasma data after
a mavoglurant oral formulation dose [1]. Several individuals exhibited irregular
concentration profiles with multiple peaks.

[1] Wendling T et al, Pharm Res, Submitted.

• The complex absorption process was described with a flexible empirical input
function [2], the weighted sum of 𝒏 inverse Gaussian density functions, 𝑰𝑮𝒋 𝒕 .

𝑰 𝒕 = 𝑭𝑫 

𝒋=𝟏

𝒏

𝒇𝒋𝑰𝑮𝒋 𝒕

[2] Csajka C et al, Pharm Res. 2005;22(8):1227-1235.

 

𝒋=𝟏

𝒏

𝒇𝒋 = 𝟏 should hold in each individual !!!Note that

• Csajka et al [2] used a specific parameterisation that assure  𝒋=𝟏
𝒏 𝒇𝒋 = 𝟏 in each

individual, however 𝒇𝒋 is allowed to take negative values to meet the constraint.

• Here, we propose that 𝒇𝒋 can be efficiently modelled on the simplex with the

𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵

𝑰 𝒕 = 𝑭𝑫 

𝒋=𝟏

𝒏

𝒇𝒋𝑰𝑮𝒋 𝒕



Application in an empirical absorption model

f1 f2 f3

mean 0.23 0.50 0.27

SD 0.17 0.20 0.14

Corr f1 f2 f3

f1 1 -0.73 -0.17

f2 -0.73 1 -0.55

f3 -0.17 -0.55 1

• 1000 individuals were simulated with the final PK model and their 𝒇𝒋
parameters were plotted on the simplex



Application in a whole-body PBPK model

• We applied 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄-𝑵 in order to incorporate population variability in organ
blood flows and volumes of a previously published diazepam PBPK model [1,2].

[1] Gueorguieva I et al, J Pharmacokinet Pharmacodyn. 2006;33(5):571-594. [2] Langdon G et al, Eur J Clin Pharmacol. 2007;63(5):485-498.

Venous
blood

Arterial
blood

Lungs

Liver

Heart

Kidney

Brain

Muscle

Spl

St

Testes

Skin

Adipose

ROB

CLint

Qlu

Qmu

Qbr

Qki

Qhe

Qsp

Qha

Qad

Qsk

Qte

Qro

Qst

Qlu

Qmu

Qbr

Qki

Qhe

Qli

Qad

Qsk

Qte

Qro

• Of the very few examples in the
pharmaceutical arena where PBPK was
used in a NLME data analysis framework

• Diazepam plasma concentrations available
for 12 individuals sampled up to 72h after a
7mg IV infusion.

• Prior information from pre-clinical species
was utilised to facilitate KP estimation.

• However, the stochastic part of the model was minimal including IIV only in
CLint and a residual error component.



Variability in organ blood flows and volumes  

• Population variability in organ blood flows was incorporated as:

𝑸𝒋,𝒊 = 𝒇𝑸𝒋,𝒊 ∙ 𝑪𝑶𝒊 𝒇𝑸 ~ 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄-𝑵 (𝑴𝑸, 𝜮𝑸)

𝑽𝒋,𝒊 = 𝒇𝑽𝒋,𝒊 ∙ 𝑾𝑻𝑬𝒊 𝒇𝑽 ~ 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄-𝑵 (𝑴𝑽, 𝜮𝑽)

• Population variability in organ volumes was incorporated as:

• Note that 𝒇𝑸𝒋,𝒊 and 𝒇𝑽𝒋,𝒊 are sampled from separate distributions, so

correlation between them cannot be captured with a covariance structure.

• When data are available it is advisable to at least relate 𝑪𝑶𝒊 with 𝑾𝑻𝑬𝒊
through a fixed covariate relationship (e.g., allometry).



Variability in organ blood flows and volumes  

• As only plasma concentrations are observed we do not expect to be able to
estimate the values of system parameters and the related random effect terms.

• Prior physiology knowledge should be utilised in order to either fix the system
parameters and their variability terms or provide strong informative priors in a
Bayesian or MAP method.

• A crucial step was the derivation of 𝑴,𝜮 of the respective multivariate normal,
which will provide a 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄-𝑵 distribution with the desirable characteristics
that match our prior knowledge for the system parameters.

• In the current work we controlled (fixed) 𝑴,𝜮 to generate population
distributions of organ blood flows and volumes that have

(-) means matching the known from physiology average individual values [1]

(-) CV in the range of 10%-30% as assessed in different scenarios
[1] Brown RP et al, Toxicol Ind Health. 1997;13(4):407-484.



Variability in fractional organ blood flows  



Variability in fractional organ volumes  



System parameters variability in pop-PBPK

• To formally assess the degree of bias that can arise if we omit population
variability in PBPK system parameters, we performed a simulation study.

• Investigate the importance of taking into account system parameter variability
when performing population data analysis with a PBPK model structure.



Simulation study procedure (A)

1st step: Use a diazepam PBPK that incorporates IIV not only on CLint but also
on system parameters to simulate 1000 datasets with the design of
the original study and the following scenarios:

 Scenario A1: CV of 10% on organ blood flows and volumes

 Scenario A2: CV of 20% on organ blood flows and volumes

 Scenario A3: CV of 30% on organ blood flows and volumes

2nd step: Fit the simulated datasets with the same model but omitting
variability on organ blood flows and volumes

3rd step: For each scenario, among 𝑵 successfully minimised runs calculate the
relative bias in random effect terms estimates

𝑹𝑬𝑬𝒏 =
 𝝌𝒏 − 𝝌∗

𝝌∗
∙ 𝟏𝟎𝟎 𝑹𝒃𝒊𝒂𝒔 =

𝟏

𝑵
∙  

𝒏=𝟏

𝑵

𝑹𝑬𝑬𝒏



Simulation study procedure (B)

1st step: Use a diazepam PBPK that incorporates IIV not only on CLint and
system parameters but also on adipose KP to simulate 1000 datasets
with the design of the original study and the following scenarios:

 Scenario B1: CV of 10% on organ blood flows and volumes

 Scenario B2: CV of 20% on organ blood flows and volumes

 Scenario B3: CV of 30% on organ blood flows and volumes

2nd step: Fit the simulated datasets with the same model but omitting
variability on organ blood flows and volumes

3rd step: For each scenario, among 𝑵 successfully minimised runs calculate the
relative bias in random effect terms estimates

𝑹𝑬𝑬𝒏 =
 𝝌𝒏 − 𝝌∗

𝝌∗
∙ 𝟏𝟎𝟎 𝑹𝒃𝒊𝒂𝒔 =

𝟏

𝑵
∙  

𝒏=𝟏

𝑵

𝑹𝑬𝑬𝒏



Simulation study results

𝑪𝑽 𝑵 𝑰𝑰𝑽 𝑪𝑳𝒊𝒏𝒕 𝑹𝒆𝒔 𝑽

10% 981 -2.5% (-8.3 , 3.7) +2.2% (1.1 , 3.3)

20% 982 +3.8% (-2.0 , 10.1) +9.0% (7.6 , 10.3) 

30% 992 +47.3% (35.8 , 62.2) +34.9% (31.4 , 39.5)

Case A

𝑹𝒃𝒊𝒂𝒔 % in random effect estimates

𝑪𝑽 𝑵 𝑰𝑰𝑽 𝑪𝑳𝒊𝒏𝒕 𝑰𝑰𝑽 𝑲𝑷𝒂𝒅𝒊 𝑹𝒆𝒔 𝑽

10% 920 -3.6% (-8.7 , 2.0) +8.4% (2.3 , 15.2) +0.6% (-0.6 , 1.8)

20% 905 -3.2% (-8.7 , 2.6) +45.7% (37.2 , 54.9) +2.9% (1.7 , 4.2) 

30% 904 -5.4% (-10.5 , 0.2) +202% (173 , 241) +7.8% (6.5 , 9.1)

Case B

𝑹𝒃𝒊𝒂𝒔 % in random effect estimates



VPC of a simulated dataset fit

Data simulated with 30% CV on organ blood flows /
volumes. Fitted model omits system parameter
variability and inflates 𝐈𝐈𝐕 𝑪𝑳𝒊𝒏𝒕 by 55% and 𝑹𝒆𝒔 𝑽
by 34% from their real values.

• Even in cases where the stochastic model is substantially biased we can’t
always be able to spot this problem by looking at the model fit.



A biased stochastic model affects extrapolation  

• Population PBPK models are rarely developed solely to describe the data, but
mainly for their ability to extrapolate and perform predictions.

• If the stochastic part of the population PBPK model is biased its predictive
performance may decline.

Extrapolation example:

• Diazepam is compound with low 𝑬𝒉 and high plasma binding.

• Assume now a hypothetical scenario where due to a specific situation (e.g.
enzyme induction, polymorphism, change in binding), 𝑬𝒉 increases to 0.8.

• In such a situation, the PBPK model with the biased variability structure will
fail to extrapolate and correctly predict variability in plasma concentrations.



A biased stochastic model affects extrapolation  

Data points generated with the
correct stochastic diazepam model
(variability in Q, V), plotted on top
of our predictions with the biased
stochastic diazepam model



Conclusions

• The use of hierarchical - population PBPK models to analyse clinical data is
an approach with a progressively increasing impact.

• This approach may be even more popular in the future with the advance of
experimental methods to determine tissue concentrations noninvasively.

• In this work we examined the most common types of constraints in such
models that arise due to the fact that parameters represent actual
physiological processes.

• Transformations of the normal not only can satisfy these constraints but also
offer high flexibility during characterisation of the parameters distribution.

• Development of the stochastic part of a population PBPK model is
methodologically challenging but crucial for the ability to perform
extrapolation outside the studied dataset and conditions.
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• Depending on the prior information in hand we can either:

Application in Type 1 example

Prior knowledge suggests that GRT has a population mean of 0.25 h with a 37% CV.
Fit 𝜧 and 𝜮 to the suggested moments using numerical integration and an
optimisation algorithm.

 Fit 𝜧 and 𝜮 to the moments of the prior distribution (Gastric residence time)

𝜧 = −𝟏. 𝟒𝟐𝟐𝟓 𝜮 = 𝟎. 𝟔𝟎𝟔𝟓

𝛼 = 0.05 ℎ 𝛽 = 1 ℎ

𝑬 𝒙 = 𝟎. 𝟐𝟓

𝑪𝑽 = 𝟑𝟕%

 Directly fit 𝜧 and 𝜮 to the actual prior distribution (Small intestinal residence time)

Extract observed data (Yu, 1996) with regard to
SIRT and then directly use these data to obtain
maximum likelihood estimates of the 𝜧 and 𝜮
parameters of the pdf.

𝜧 = −𝟏. 𝟓𝟔 𝜮 = 𝟎. 𝟔𝟐

𝛼 = 29 𝑚𝑖𝑛𝑠 𝛽 = 999 𝑚𝑖𝑛𝑠



• Plotted below are liver volumes and blood flows from 1000 individuals
randomly sampled from Simcyp’s default virtual population.

0.85 < 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 (𝐿) < 2.47

𝑚𝑒𝑎𝑛 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 1.50 𝐿

𝑆𝐷 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 0.26 𝐿

64.38 < 𝑙𝑖𝑣𝑒𝑟 𝑏𝑙. 𝑓𝑙𝑜𝑤 (𝐿/ℎ) < 117.89

𝑚𝑒𝑎𝑛 𝑙𝑖𝑣𝑒𝑟 𝑏𝑙. 𝑓𝑙𝑜𝑤 = 86.02 𝐿/ℎ

𝑆𝐷 𝑙𝑖𝑣𝑒𝑟 𝑏𝑙. 𝑓𝑙𝑜𝑤 = 7.97 𝐿/ℎ

𝐶𝑜𝑟𝑟 𝑣𝑜𝑙𝑢𝑚𝑒, 𝑏𝑙. 𝑓𝑙𝑜𝑤 = 0.61

Application in Type 2 example



0.85 < 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 (𝐿) < 2.47

𝑚𝑒𝑎𝑛 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 1.50 𝐿

𝑆𝐷 𝑙𝑖𝑣𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒 = 0.26 𝐿

64.38 < 𝑙𝑖𝑣𝑒𝑟 𝑏𝑙. 𝑓𝑙𝑜𝑤 (𝐿/ℎ) < 117.89

𝑚𝑒𝑎𝑛 𝑙𝑖𝑣𝑒𝑟 𝑏𝑙. 𝑓𝑙𝑜𝑤 = 86.02 𝐿/ℎ

𝑆𝐷 𝑙𝑖𝑣𝑒𝑟 𝑏𝑙. 𝑓𝑙𝑜𝑤 = 7.97 𝐿/ℎ

𝐶𝑜𝑟𝑟 𝑣𝑜𝑙𝑢𝑚𝑒, 𝑏𝑙. 𝑓𝑙𝑜𝑤 = 0.61

𝐴 =
0.85
64.38

𝐵 =
2.47
117.89

𝑴 =
−𝟎. 𝟒𝟓
−𝟎. 𝟒𝟑

𝜮 =
𝟎. 𝟓𝟓 𝟎. 𝟑𝟏
𝟎. 𝟑𝟏 𝟎. 𝟒𝟔

• Fit 𝜧 and 𝜮 to the moments of the prior distribution

Application in Type 2 example



𝜧 =
𝟎
𝟎

, 𝜮 =
𝟎. 𝟐 −𝟎. 𝟐

−𝟎. 𝟐 𝟎. 𝟓

Simulate data with a given
covariance structure, using
the 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵

Advantages of the multivariate logistic - N

θ2



𝜧 =
𝟎
𝟎

, 𝜮 =
𝟎. 𝟐 −𝟎. 𝟐

−𝟎. 𝟐 𝟎. 𝟓

Simulate data with a given
covariance structure, using
the 𝒍𝒐𝒈𝒊𝒔𝒕𝒊𝒄 - 𝑵

Advantages of the multivariate logistic - N

𝒂 = 𝟑. 𝟗, 𝟑. 𝟖, 𝟑. 𝟗

Perform MLE to estimate
the 𝑫𝒊𝒓𝒊𝒄𝒉𝒍𝒆𝒕 parameters
that best fit the data

θ2



Sensitivity of plasma output on tissue KP values  



Application in an empirical absorption model

; Assume the 2-d untransformed variable U ~ N (M, Σ)
U1 = THETA (1) + ETA (1)                    
U2 = THETA (2) + ETA (2)

; Create the 3-d variable FR ~ logistic-N referring to the fj parameters
FR1 = EXP (U1) / (EXP (U1) + EXP (U2) + 1)
FR2 = EXP (U2) / (EXP (U1) + EXP (U2) + 1)
FR3 = 1 / (EXP (U1) + EXP (U2) + 1)

; Initial estimates for the M and Σ parameters of the 2-d normal 
$ THETA

M1     ; first element of the 2-d mean vector M
M2      ; second element of the 2-d mean vector M

$ OMEGA BLOCK (2) 
Σ11 ; 2 x 2 covariance matrix Σ
Σ21 Σ22


