

Misconceptions on the issue of high vs low hepatic extraction ratio:

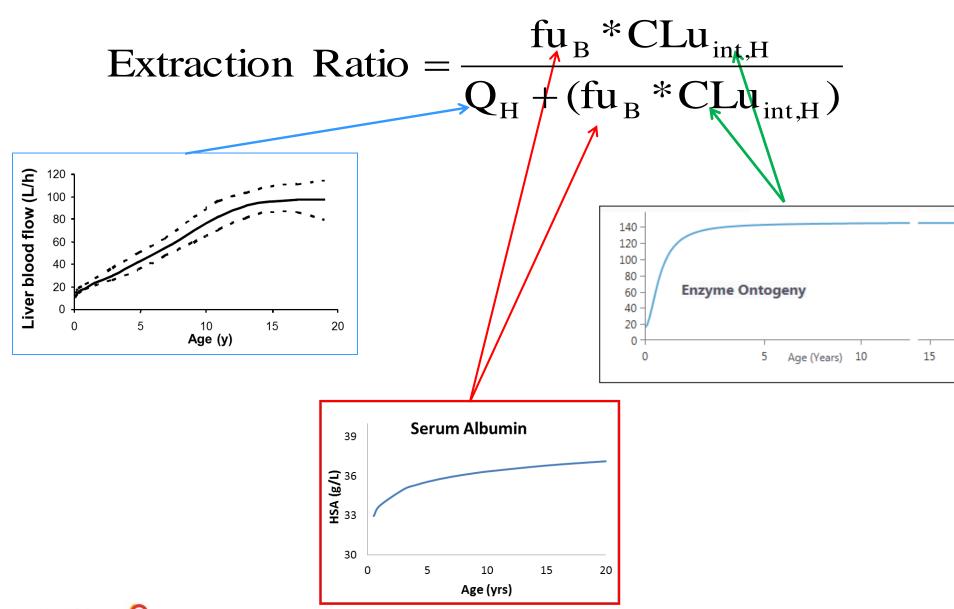
the forgotten element of age variation

Khaled Abduljalil

The Problem

Hepatic clearance is determined by their hepatic extraction ratio (E_H)

$$CL_H = Q_H \times E_H \longrightarrow E_H = CL_H/Q_H$$


E_H generally classified as:

- Low (<0.3) → warfarin, phenytoin, ... etc.
- Intermediate (0.3-0.7) → Quinidine, codeine, nortryptyline, ... etc.
- High (>0.7) → morphine, verapamil, propranolol, ... etc.

E_H is commonly considered as an inherent attribute of drug with a fixed value.

Extraction ratio

Objective

To investigate age-related changes in E_H from birth to 17 years for

- Midazolam
- A drug X with 10 x midazolam CLu_{int.H}
- A drug Y with 0.1 x midazolam CLu_{int,H}

To identify commonly applied covariates in paediatric PopPK studies

Methods

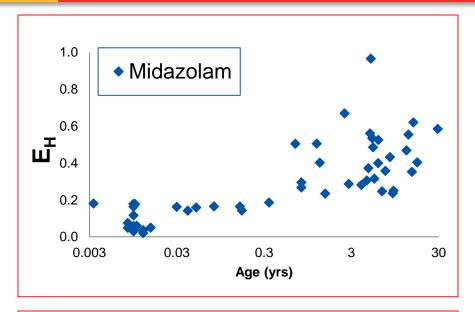
Data on midazolam CL _{iv} (0 to 17 yrs) were collected from the literature.
${\sf CL_{H,B}}$ was calculated from ${\sf CL_{iv}}$ considering ontogeny of contributing parameters (renal function, fu, B:P etc.) (Salem et al., 2014).
Impact of age-related changes to $\mathrm{fu_B}$, $\mathrm{CLu_{int,H}}$ and $\mathrm{Q_{H,B}}$ were investigated on relative paediatric to adult $\mathrm{E_H}\mathrm{s}$.
A comprehensive literature survey was carried out to identify commonly applied covariates in paediatric PopPK studies.

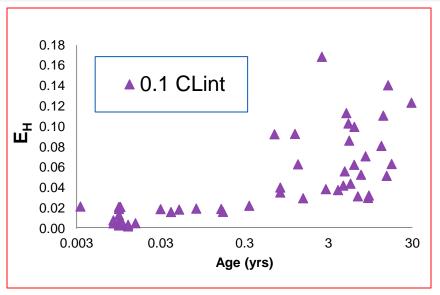
Results

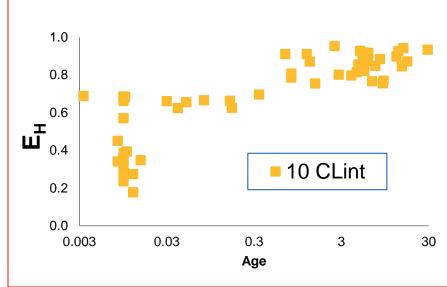
☐ Midazolam

- fu_B decreased from 0.15 at the age of 3 days to 0.06 in adulthood,
- CLu_{int.H} increased from 0.05 L/h to 2057 L/h.
- E_H is low at birth (0.02) and increases with age and becomes intermediate by about 7 months when it approximates the adult value (\sim 0.6).

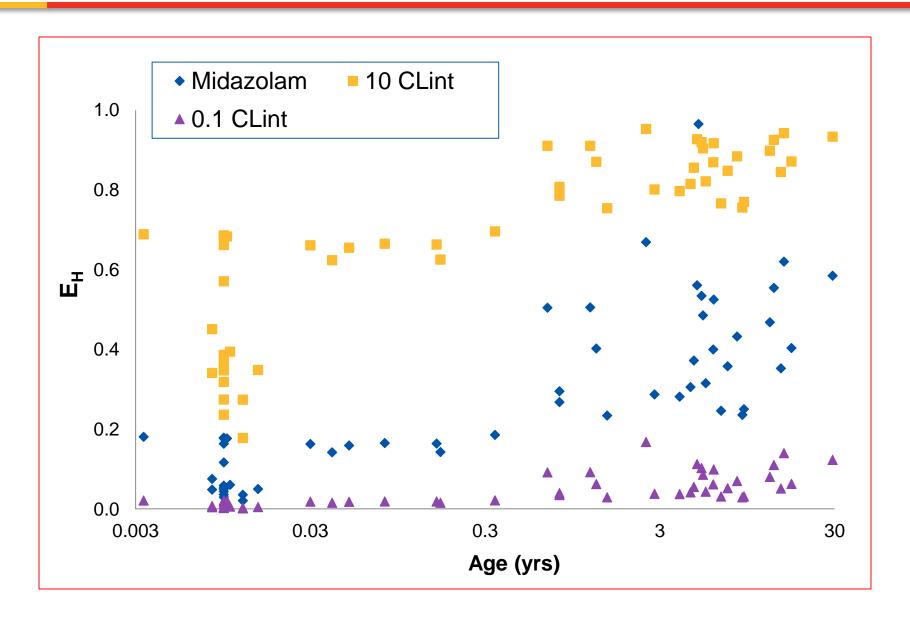
☐ Drug with MDZ-CLu_{int,H} x10

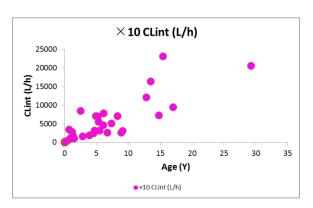

 E_H is remain high from birth although E_H reached adult level (0.9) at about 8 months

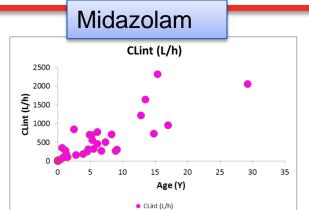

☐ Drug with MDZ-CLu_{int,H} x 0.1

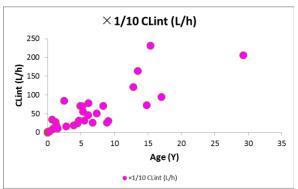

 $E_{\rm H}$ is remain low from birth although only 30% of adult $E_{\rm H}$ value (0.1) is achieved by the first year

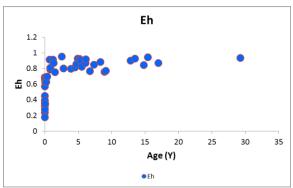
Hepatic Extraction ratio

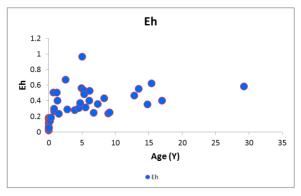


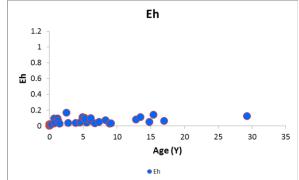


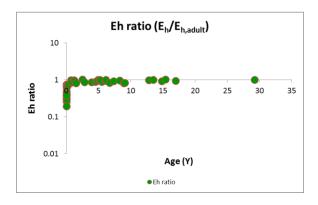

Hepatic Extraction ratio of the studied examples

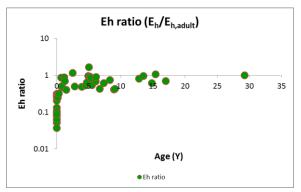


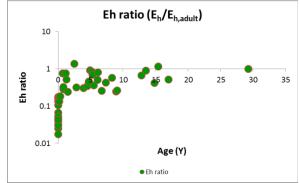



Results









PopPK Survey results

- Total of 121 PopPK studies investigated paediatric patients.
- Half of these studies did not consider interaction between covariates at all.
- Majority includes WT and AGE(GA, PNA, PMA)

Covariates in all studies

Post-menstraul age

Postnatal age

Weight

BMI

BSA

Height, head circumference

Sex

Race

Serum creatinine

Clearance of creatinine

Unconjugated bilirubin

Bilirubin

Aminotransferase

Alkaline phosphatase

Globulin conc

Platelet counts

Glomerular filtration rate

CYP2C19 genotypes

2C9 genotype

CYP2D6 genotypes

OCT1 genotypes

Conclusion

Coining a drug as 'high extraction' cannot be universally applied at lower ages
Low extraction drugs in adults will be low extraction in paediatrics, too.
This has implications for selecting covariates to study in populations involving wide age range and include neonates or young children.
Attention should be paid to interaction terms of covariate during analysis of such data (e.g. age-albumin, genotype-age) as impact of some of the covariates might change with age.

Acknowledgements

Farzaneh Salem

Simcyp Limited, Sheffield, UK

Yoshiteru Kamiyama

Astellas Pharma Inc, Japan

Amin Rostami-Hodjegan

Simcyp Limited, Sheffield, UK & Manchester University, UK

Questions?

Extraction Ratio =
$$\frac{f_{u,b} \times CLu_{int}}{Q_h + (f_{u,b} \times CLu_{int})}$$

$$fu(paed) = \frac{1}{1 + \frac{(1 - fu(adult) \times [P]_{paed}}{[P]_{adult} \times fu(adult)}}$$

$$Q_{H,B} = \frac{25.5}{100} \times Cardiac output$$

$$fu_B = \frac{fu(paed)}{B:P}$$

$$CLu_{int} = \frac{Q_{H B} \times CLH}{fu_{B}(QH - CLH)}$$

