

A tale of two models: PSA and its links to Progression Free Survival

Hitesh Mistry Manchester Pharmacy School

What is PSA?

- Prostate Specific Antigen
 - Secreted by prostate epithelial cells
 - Increase in epithelial cells => increase in PSA
 - Increase in testosterone etc. => increase in PSA
 - Could be a useful marker for epithelial derived tumours
 - Measure of both pathway output and cell number
 - Makes it difficult to interpret
 - Other factors effect it's serum levels: Prostatitis, Benign Prostate Hyperplasia, Sex etc.
 - Makes it even more difficult to interpret
 - The setting is very important

These difficulties has led to PSA having a turbulent history when used as a prognostic/predictive marker within prostate cancer

Medics still see it as the gold standard though despite its caveats

ROC curves – Medical Obsession

- New plasma biomarkers in Oncology are routinely assessed by use of ROC curves
 - Medical community loves them!
- What are they?
 - Response variable has binary outcome
 - Threshold of a discriminant is varied through a range of values and true positive and true negative values are recorded
 - The curve is plot of sensitivity (y-axis) as a function of 1specificity (x-axis)
- What comes out?
 - We can use Youdens Index = Specificity+Sensitivity-1 to select the optimal threshold point aka:

"Magic Value"

Plan

- Data:
 - 2 PhIII placebo arms within a similar patient population, PFS as main endpoint
- Build time-to-event model on a training set (one placebo arm)
 - Also use the linear predictor to develop a classifier to identify those that will progress and those that don't
- Assess models performance within the test setdata-set not used to build the model (other placebo arm)
- We assess baseline values first

Data-sets

- 2, one has a higher proportion of disease progression events in it than the other
- Both from a similar patient population

Training Study

- Placebo arm of a PhIII study in locally invasive non-metastatic prostate cancer
 - n=611
 - 185 disease progression events
 - Increase in local tumour size
 - Presence of metastases
 - A long study
 - Covariates
 - Tumour Classification (TUMCLS)
 - How much it's spreading, scale 1:4
 - Histological Grading (HISTGD)
 - Gleason Score, describes the histological patterning
 - Age, Origin etc.
 - 10 in total

Training Study Model

Final Model is a Weibull model with:
Scale = a0 + a1*PSABSL

– A boring model!

Training Study Model

• We can use the linear predictors to develop a simple classification model

Scale = a0 + a1*PSABSL

- Assess the linear predictor within a ROC analysis
 - Bootstrap to suggest a suitable threshold (median value) that maximises both sensitivity and specificity (youdens index) to take forward into test set aka "Magic Number"

Training Set				
Sensitivity	Specificity			
0.72 (0.54-0.89)	0.62 (0.41-0.77)			

Test Set Study

- Placebo arm of a PhIII study in locally invasive non-metastatic prostate cancer:
 - n=1803
 - 188 events
- Test set is slightly different to the training set

HR = 2.8 (2.3-3.4)

- Should be a good test
 - Predict HR?
 - Classification of patients?

Test Set Study - Results

- Observed HR = 2.8
- Prediction:
 - Mean HR = 2.9
- It worked! It's hilarious! This is why:

Test Set Study - Results

"Magic" value performance

- Application of the median threshold from the training set on training set
- Scale the magic value by the change in predicted weibull scale ratio- helps to maintain classifier performance
- The results are pretty impressive!

Training Set				Test Set	
Sensitivity	Specificity	Youdens Index	Sensitivity	Specificity	Youdens Index
0.69	0.63	0.32	0.69	0.62	0.31

Negative Arm		Positive Arm			
n	Obs.	Exp.	n	Obs.	Exp.
1035	59	112.4	766	129	75.6

Other way round

- Build model on the data-set with less proportion of events and test in the one with more
 - Final model: Weibull with covariates: PSABSL, DIFF, TUMCLS and HISTGD
 - Different to the model from the other study
 - Observed HR = 2.8 (2.3-3.4)
 - Prediction HR = 3.4 (3.2-3.6)
 - Not amazing but not terrible!
 - The "Magic" number did that work...

Other way round

• Appears to work well!

Training Set			Test Set		
Sensitivity	Specificity	Youdens Index	Sensitivity	Specificity	Youdens Index
0.75	0.61	0.36	0.65	0.60	0.25

Negative Arm		Positive Arm			
n	Obs.	Exp.	n	Obs.	Exp.
317	63	105.2	285	117	74.8

Summary

- Hazard Ratio prediction were pretty good
 - Simple ideas have value
 - The final model was different with either data-set
 - Bound to be as there were very few events in one of the studies
- Performance of the classifier was good too
 - "Magic" values can work
 - Use the linear predictor of the survival model to scale the threshold – a simple idea!
 - Nothing wrong with mixing non-parametric and parametric approaches
- The setting is important
- Not looked at PSA kinetics yet

Our field likes quotes...

