

Development and Evaluation of Bayesian Software for Improving Therapeutic Drug Monitoring of Gentamicin in Neonates

<u>Eva Germovšek</u>, Alison Kent, Nigel Klein, Mark A Turner, Mike Sharland, Elisabet Nielsen, Paul Heath, Joseph F Standing

> PKUK November 7, 2014

Overview

- Introduction
- Aims
- Methods
- Results
- Conclusions

TDM = therapeutic drug monitoring

Introduction

- Neonatal infection → morbidity, mortality
- Gentamicin: antibiotic used for treating newborns
- Narrow therapeutic index
- Small blood volumes
- Renal function not fully developed
- \rightarrow Need for TDM

Introduction

Background:

• NPSA alert

Patient Safety Alert

NPSA/2010/PSA001 09 February 2010 National Patient Safety Agency

National Reporting and Learning Service

Safer use of intravenous gentamicin for neonates

Patient safety incidents have been reported involving administration of gentamicin at the incorrect time, prescribing errors and issues relating to blood level monitoring.

Action for the NHS

NHS organisations, clinical directors and those responsible for the provision of neonatal services should ensure that by **9 February 2011:**

 a local neonatal gentamicin protocol is available that clarifies the initial dose and frequency of administration, blood level monitoring requirements, and arrangements

Introduction

UK neonatal units:

• No single dosing & monitoring regimen

J Antimicrob Chemother 2011; **66**: 2647–2650 doi:10.1093/jac/dkr351 Advance Access publication 22 August 2011

Variation in gentamicin and vancomycin dosage and monitoring in UK neonatal units

S. Kadambari^{1*}, P. T. Heath¹, M. Sharland¹, S. Lewis², A. Nichols³ and M. A. Turner⁴

Forty-three units across the ENN responded to the gentamicin questionnaire, revealing 24 different combinations of dose, timing of dose and timing of monitoring. Figure 1 demonstrates

Introduction

Usually:

- Trough levels
 - taken at pre-set intervals (pre-dose)
 - require separate blood test
 - at inconvenient times

Bayesian methods:

- Combine TDM with routine blood sampling
- $\rightarrow \downarrow$ invasive

Published PK models:

- Model: 1-, 2-, 3-compartment
- Covariates: weight, age, creatinine, APGAR score, sepsis, gender, co-medication
- \rightarrow a more mechanistic approach is required

Aim

- 1. Develop a software neoGent \rightarrow improve TDM
 - predict safe trough levels from routine blood samples
- 2. Evaluate the developed software
 - with new prospectively collected data

Overview

- Introduction
- Aims
- Methods
- Results
- Conclusions

Data

- Retrospective: published studies \rightarrow model building
 - Literature search: data from two studies^{a,b}
 - N=174, samples=1163
 - GA=23.3-42.1 weeks, PNA=0-65 days
- Prospective: neoGent study → model evaluation
 - St George's, Liverpool, Oxford, Portsmouth, Coventry
 - Collected: June 2012 November 2013
 - N=163, samples=483
 - GA=23.9-42.3 weeks, PNA=0-77 days

GA = gestational age PNA = postnatal age

Methods

Model development

- PK meta-analysis performed on pooled data from published studies
- NONMEM VII; FOCE with interaction
- Mechanistic covariates:
 - Allometric scaling and a function, describing maturation of the glomerular filtration rate included *a priori*
 - PNA and serum creatinine tested

Methods

Model predictions evaluation

- Simulate from final model
 - Internal and external VPC
- Use prospectively collected data:
 - Take the 1st level = opportunistic, study sample
 - Predict the 2nd level = trough sample
 - Compare measured with model predicted trough level

Methods

neoGent software (pilot version)

• Individual patient's data put into a file:

ID	GA	SEX	DATE	TIME	PNA	WT	CREAT	RATE	AMT	DV
1	226	1	03/09/2013	12:00	3	1710	59	240	8	0
1	226	1	03/09/2013	15:15	3	1710	59	0	0	6.8

- Read into R; changed to appropriate format
- Predictions: R calls NONMEM
- NONMEM results read back into R
- Prediction of the time when concentration <2 mg/L → safe to give the next dose

Overview

- Introduction
- Aims
- Methods
- Results
- Conclusions

Final model

- 3-compartment model
- Residual error model: proportional + additive
- Inter-individual and inter-occasion variability: exponential model
- PNA and serum creatinine standardized for PMA: significant

$$CL = \theta_{CL} \cdot \left(\frac{WT}{70}\right)^{0.632} \cdot \frac{PMA^{3.33}}{55.4^{3.33} + PMA^{3.33}} \cdot \left(\frac{MSCr}{TSCr}\right)^{\theta_{SCr}} \cdot \frac{PNA}{\theta_{P_{50}} + PNA} \cdot e^{(\eta_{CL} + \kappa_{CL})}$$
$$V = \theta_V \cdot \left(\frac{WT}{70}\right) \cdot e^{\eta_V} \qquad Q = \theta_Q \cdot \left(\frac{WT}{70}\right)^{0.75} \cdot e^{\eta_Q}$$

 $TSCr = -2.8488 \cdot PMA [weeks] + 166.48$

Cuzzolin L, et al., Pediatr Nephrol 2006; **21**: 931-8. Rudd PT, et al., Arch Dis Child 1983; **58**: 212-5.

Internal evaluation

Visual predictive check

Internal VPC

External VPC

An example of the neoGent output

Predictions

PE = observed - predicted

dataset	Limit = 1 mg/L			Limit = 2 mg/L			Median	95% CI	
	n correct (%)	ΟΡ	UP	n correct (%)	ОР	UP	PE (mg/L)	2.5%ile	97.5%ile
paired + unpaired	215/254 (84.6)	17	22	246/254 (96.9)	6	2	-0.0016	-0.87	0.85
paired: study≥3mg/L	18/20 (90.0)	0	2	20/20 (100)	0	0	-0.061	-0.53	0.84
XV: paired: study≥3mg/L	428/456 (93.9)	13	15	421/456 (92.3)	20	15	-0.062	-1.55	1.04

OP is overprediction, UP is underprediction; PE is prediction error, CI is confidence interval for the prediction errors, XV is cross-validation

Paired samples with study level ≥3 mg/L

Comparison with other published models

Prediction error (mg/L)

Overview

- Introduction
- Aims
- Methods
- Results
- Conclusions

Conclusions

- Final model good descriptive & predictive properties
- Provisional version of neoGent software developed

Future work

- Develop user-friendly interface
- Further clinical trial

Acknowledgements

Patients, who participated in the neoGent study

Dr Alison Thomson

action medical research for children

London Pharmacometrics Interest Group

Questions?