

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Use of a mathematical model of drug-induced liver injury to interpret safety biomarker data from early clinical trials for Entolimod, a treatment for life threatening radiation poisoning

> Diane M. Longo, Ph.D. DILI-sim Consultant The Hamner-UNC Institute for Drug Safety Sciences Research Triangle Park, NC

*DILIsym[®] and MITOsym[®] are registered trademarks of The Hamner Institutes for Health Sciences for computer modeling software and for consulting services.

The DILI-sim Initiative Is a Partnership between the Hamner Institutes and Pharmaceutical Companies to Minimize DILI

- Overall Goals
 - Improve patient safety
 - Reduce the need for animal testing
 - Reduce the costs and time necessary to develop new drugs

<u>History</u>

- Officially started in 2011
- 14 major pharmaceutical companies have participated
- Members have provided compounds, data, and conducted experiments to support effort
- Over \$4 million total invested in project

Goals and Intended Applications of Developing DILIsym[®] for the DILI-sim Initiative

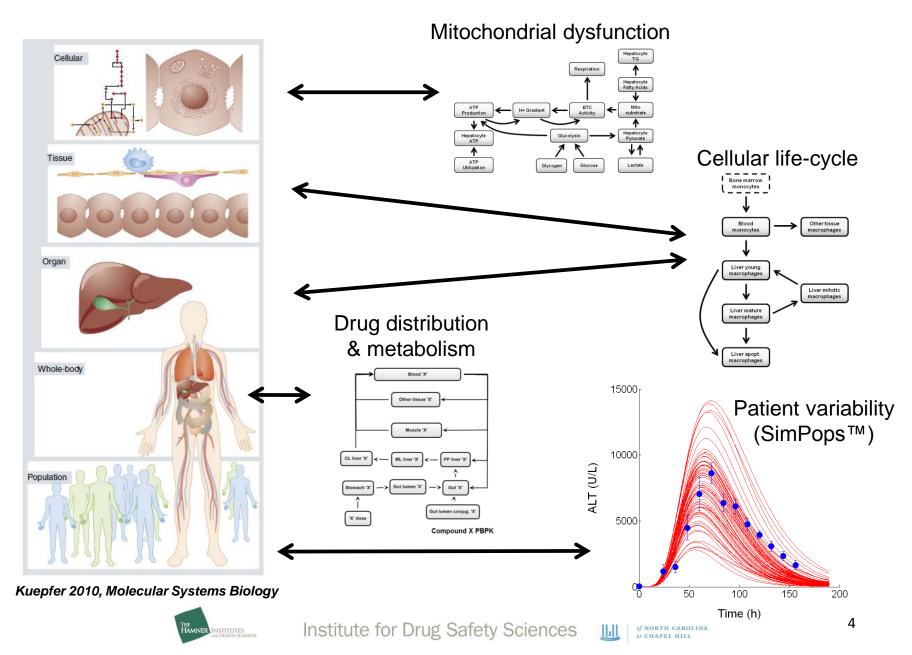
Near term goals:

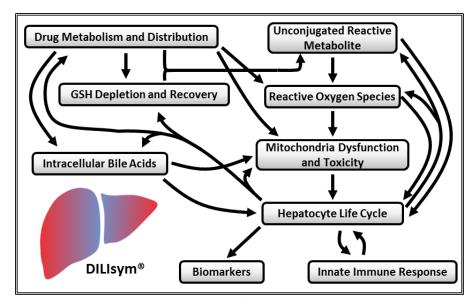
- Develop DILIsym[®] software to better inform safety decisions within drug development
 - In vitro to in vivo
 - Preclinical to first-in-human
 - Biomarker interpretation

Long term goal:

 Use DILIsym[®] to increase understanding of idiosyncratic DILI

Intended application:


- Simulations of hepatotoxicity for humans and rodents
- In vitro, in vivo, and/or clinical data as inputs



DILIsym®: 'Middle Out' and Multi-Scale

DILIsym[®] Overview

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels

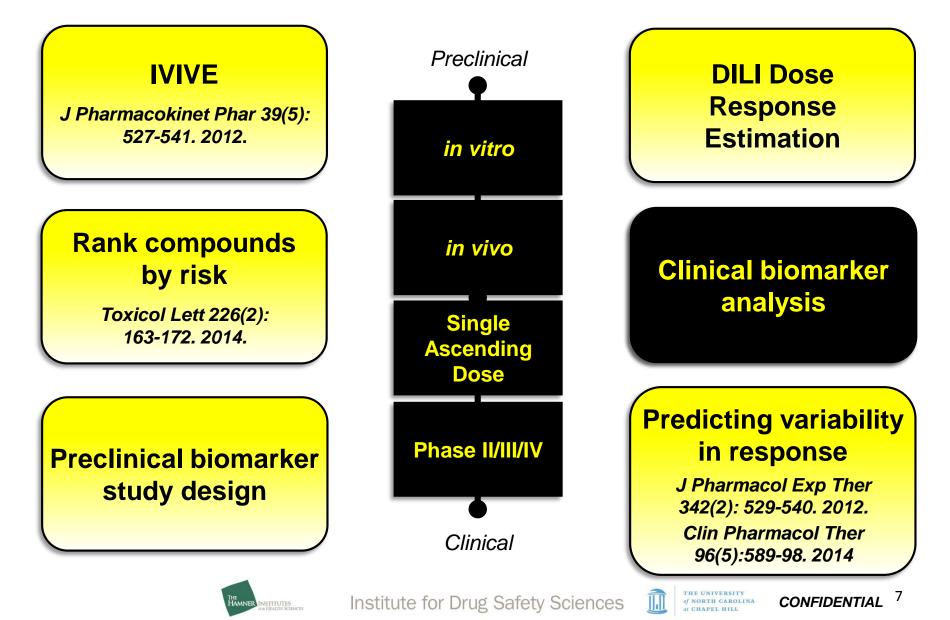
PV

PP

ML

Biomarkers of Hepatocellular Death Are Outputs of DILIsym[®]

- Biomarkers are outputs of model
 - Used for validation of DILIsym[®] model
 - Used for comparison with clinical and preclinical data
- More biomarkers being added as data are becoming available
 - SDH, miR-122 latest examples
- Additional DILIsym[®] model outputs include:
 - Fraction of viable hepatocytes
 - Liver ATP
 - Liver glutathione
 - Circulating, liver, and excreted drug and metabolites


Marker	Category
Alanine aminotransferase (ALT) ^{1,2,3,4,5}	Necrosis
Bilirubin (direct/conjugated) ^{1,5}	Function/Cholestasis
Bilirubin (total) ^{1,2,5}	Function/Cholestasis
Aspartate aminotransferase (AST) ^{1,2,3,4,5}	Necrosis
Prothrombin time ^{1,2}	Function
HMGB1 ^{1,10}	Necrosis
Full length cytokeratin-18 ¹	Necrosis
Cleaved cytokeratin-181	Apoptosis
Sorbitol dehydrogenase (SDH) ^{1,6}	Necrosis
Arginase-19	Necrosis
Liver derived mRNA ⁷ and miRNA ⁸	Necrosis

¹Antoine Xenobiotica 2009; ²Giannini CMAJ 2005; ³Horn Am J Clin Pathol 1999; ⁴Ozer J Toxicology 2008; ⁵Hy's Law: Temple R Pharmacoepidemiol Drug Saf 2006; ⁶Ozer Toxicology 2008; ⁷Wetmore Hepatology 2010, ⁹Murayama Clin Chimica Acta 2008, ⁸Yang Tox Sci 2012, ¹⁰Harrill Clin Pharmacol Ther 2011

Examples of DILIsym[®] Applications

Entolimod (Cleveland BioLabs) Project Objectives

- Entolimod (single dose) reduces radiation mortality by 40%
 - Satisfies FDA's animal rule for efficacy
- Clinical Concern
 - ALT/AST elevations observed in human safety study
 - Continued development threatened
- Primary Objective
 - Use DILIsym[®] to infer the amount of hepatocyte necrosis necessary to achieve the ALT profiles observed after Entolimod

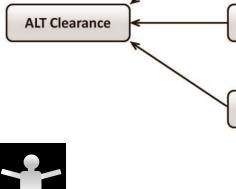

Howell, B. A., et al. (2014). A Mechanistic Model of Drug-Induced Liver Injury Aids the Interpretation of Elevated Liver Transaminase Levels in a Phase I Clinical Trial. CPT Pharmacometrics Syst Pharmacol 3: e98.

DILIsym[®] Overview

- Multiple species: human, rat, mouse, and dog
 - Population variability
- The three primary acinar zones of liver represented
- Essential processes represented to multiple scales in interacting submodels
 - Hepatocyte life cycle
 - Biomarkers

PV

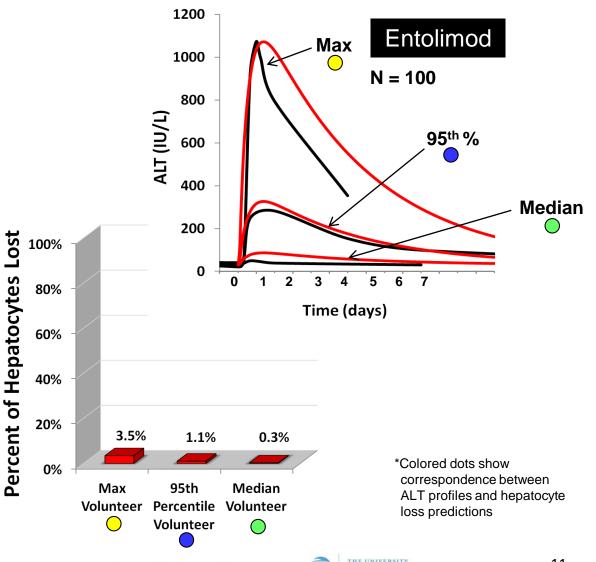
PP


ML

Approach for Using Simulations to Analyze Entolimod Clinical Data

- Approach: use ALT dynamics to infer hepatocyte loss
 - ALT content per cell based on cellular measurements
 - Boyd 1983, Remien 2012, Lindblom 2007
 - ALT release occurs upon hepatocyte necrosis
 - ALT elimination half-life based on clinical data
 - Nicoll 1997
- Initial simulations in DILIsym[®] baseline normal healthy volunteer (NHV)

Hepatocyte Necrotic Flux


Hepatocyte ALT

Intermediate ALT

Circulating ALT

Baseline Human Simulations Indicate Minimal Hepatocyte Loss with Entolimod

- ALT clinical data
 - Mostly minor elevations
 - Few higher elevations
- Focused on max, 95th percentile, and median ALT levels
- Simulations agree with ALT clinical data by design
- Minimal hepatocyte inferred from ALT profiles

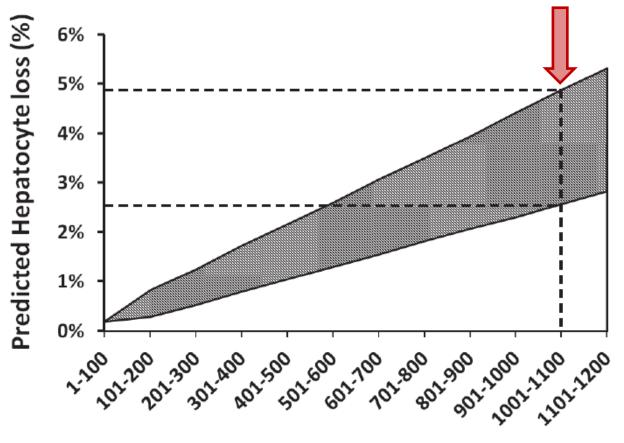


of NORTH CAROLINA

Approach for Introducing Population Variability into Simulations

- Varying parameters associated with ALT dynamics in accordance with variance described in literature
 - Remien 2012, Nicoll 1997, Portmann 1975, Prescott 1979
- Compared simulated humans (N ≈ 300) with clinical data from Prescott 1979 and Portmann 1975
 - Indirect link between ALT and necrosis
- Simulated humans used to simulate Entolimod trial protocol

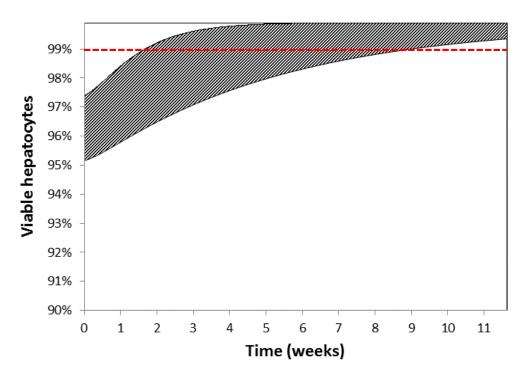
Hepatocyte proliferation rate



Minimal Range of Hepatocyte Loss Predicted for Entolimod Using Population Sample

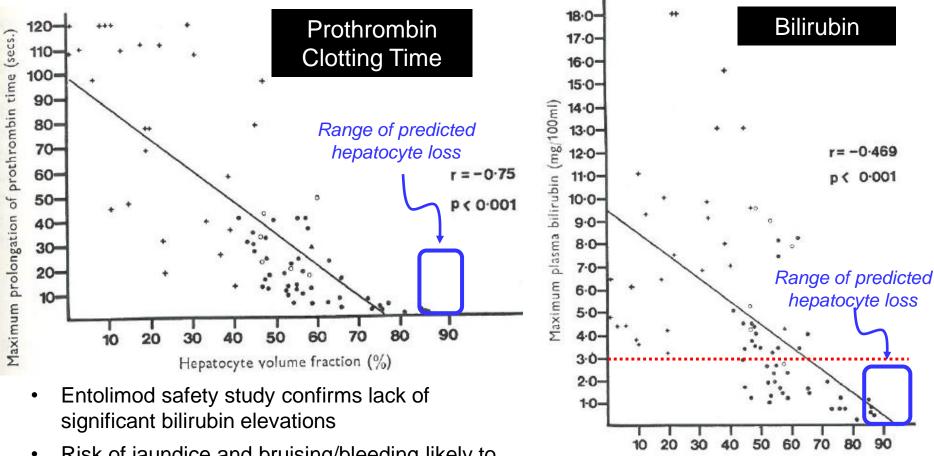
- Various levels of necrosis simulated for population sample
- Max observed ALT (1001-1100 U/L) corresponds with 2.6-4.6% predicted hepatocyte loss

Observed Peak ALT range (IU/L)


*Predictions only valid for time courses similar to those observed with Entolimod

Regenerative Hepatocyte Proliferation Predicted to be Complete 2-9 Weeks after Entolimod Dosing

- Population sample included variability in hepatocyte proliferation
- Hepatocyte restoration complete within ~2-9 weeks after onset of injury (median human prediction
 - 3 weeks)


Evidence from Literature to Support Safety of Minimal Hepatocyte Loss with Entolimod

- Excision of up to 60% of liver volume in living human donors commonly performed for autologous transplantation
 - (Florman 2006, Lee 2010)
- Clinical data from literature indicate that approximately <25% loss of hepatocytes has no detectable effect on liver function

Minimal Symptom Presentation Likely with ≤25% Hepatocyte Loss: Portmann 1975 Clinical Data

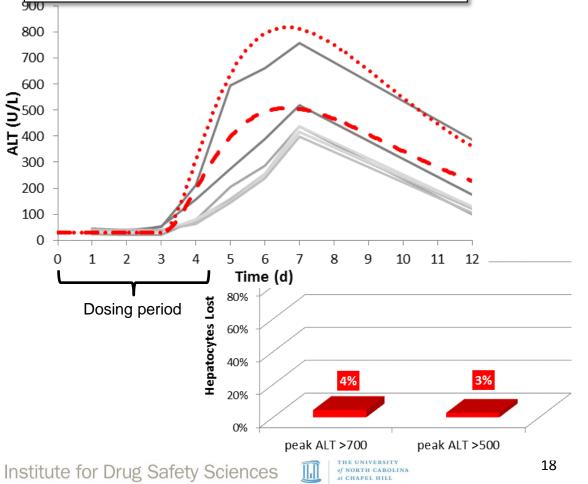
Risk of jaundice and bruising/bleeding likely to be low in range of predicted hepatocyte loss (*Portmann 1975*)

Hepatocyte volume fraction (%)

Clinical Data

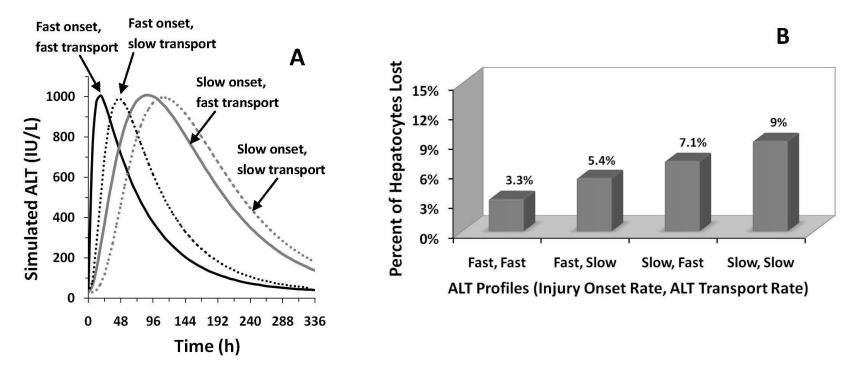
Evidence from Literature to Support Safety of Minimal Hepatocyte Loss with Entolimod

- Excision of up to 60% of liver volume in living human donors commonly performed for autologous transplantation
 - (Florman 2006, Lee 2010)
- Clinical data from literature indicate that approximately <25% loss of hepatocytes has no detectable effect on liver function
- Heparins are safe despite causing hepatocyte necrosis



Simulations Predict Minimal Hepatocyte Loss with Heparin Treatment

- Transient, benign ALT increases observed with heparin treatment in NHV
 - Additional biomarkers indicated necrosis
- Simulations performed with DILIsym[®] NHV
 - Focused on highest responders
- Similar hepatocyte loss predicted from observed ALT profiles as Entolimod


The Effects of Heparins on the Liver: Application of Mechanistic Serum Biomarkers in a Randomized Study in Healthy Volunteers

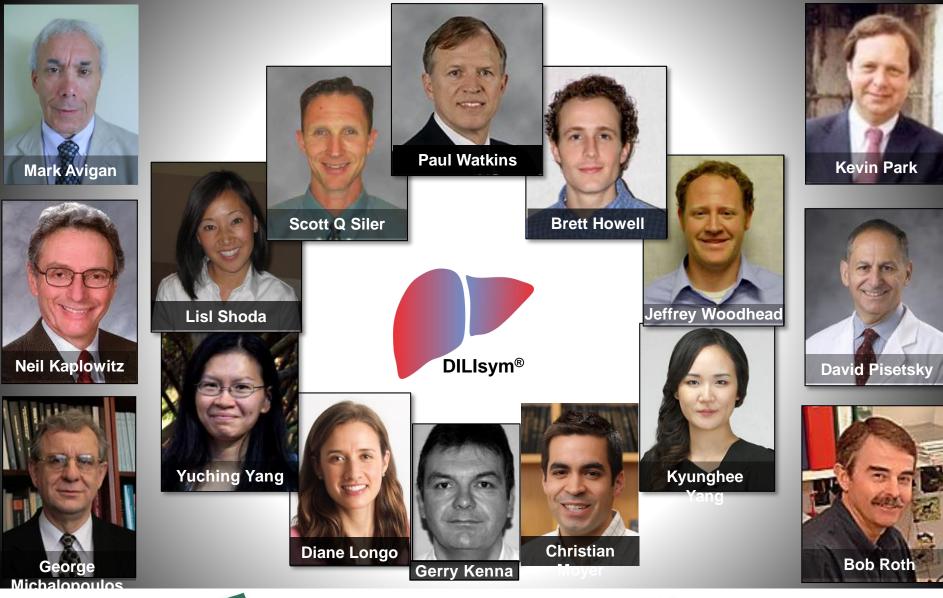
AH Harrill^{1,2}, J Roach³, I Fier³, JS Eaddy¹, CL Kurtz¹, DJ Antoine⁴, DM Spencer^{5,6}, TK Kishimoto³, DS Pisetsky^{5,6}, BK Park⁴ and PB Watkins^{1,2,7}

The Kinetics of Liver Enzyme Profiles are Critical for Assessment of Injury

- Various ALT profiles shown with different kinetics, same peak
- Rapid rises and early peaks in ALT lead to less predicted hepatocyte loss
- The detailed time course of liver enzymes is important ۰

Simulation Results

Project Summary


- Analyses indicate that volunteers with ALT elevations following Entolimod administration likely incurred hepatocyte losses of ≤5%
- The liver should have completely recovered in 2-9 weeks
- Literature review and modeling heparin-induced ALT profiles support the conclusion that the potential hepatocyte loss occurring in the Entolimod clinical trial did not represent a serious health threat
- DILIsym[®] simulation results were submitted to the FDA in support of the safety of Entolimod

20

The DILI-sim Team and the SAB

Acknowledgements

Cleveland BioLabs

٠

- Sponsored work on Entolimod
- Allowed the presentation of the materials

